Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation 2025. Preprint
Article first published online: 19 DEC 2024 | DOI: 10.17581/bp.2025.14104

Tropical epiphytes of different taxonomic groups form similar suspended soils

Alen K. Eskov 1 ORCID, Tatiana G. Elumeeva 1 ORCID, Violetta A. Viktorova 2 ORCID, Vlad. D. Leonov 3 ORCID, Nikolay G. Prilepsky 1 ORCID, Timur I. Nizamutdinov 4 ORCID, Sergey A. Kouzov 4 ORCID & Evgeny V. Abakumov 4 ORCID

1 Department of Plant Ecology and Geography, Moscow State University, Moscow, Russia
2 Tzitzin Main Botanical Garden RAS, Moscow, Russia
3 Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
4 Department of Applied Ecology, Saint-Petersburg State University, St. Petersburg, Russia


The suspended soils, associated with epiphytic plants in tropical forest canopies, have a very special type of biological cycle, morphological organization and ecological functional role. We have studies out whether the chemical composition and hydrological parameters depend significantly on the genesis of suspended soil, or they represent a single soil phenomenon with a certain supposed ecosystem function. Their maximum water holding capacity and field moisture capacity reaches hundreds and even thousands of percent which cannot but lead to mesophilization of the microclimate of the near-stem environments. The high content of nutrients in tropical suspended soils is enormously high compared to forest soils of other climatic zones and should be noted as their most important attributive characteristic. This once again confirms the hypothesis that the essence of epiphytic soil formation was and is that the biotic cycle breaks away from the ground and moves evolutionarily into the middle and upper tiers of the tropical rainforest ecosystem. Tree trunks in this context represent vertically and subhorizontally oriented phase interfaces, similar to parent materials, and epiphytic soils are analogues of peat accumulations with extremely high water-holding capacity, which is of extremely important environmental significance.

Еськов А.К., Елумеева Т.Г., Викторова В.А., Леонов В.Д., Прилепский Н.Г., Низамутдинов Т.И., Коузов С.А., Абакумов Е.В. Тропические эпифиты различных таксономических групп образуют схожие подвешенные почвы. Подвешенные почвы, связанные с эпифитными растениями в пологах тропических лесов, имеют совершенно особый тип биологического цикла, морфологическую организацию и экологическую функциональную роль. Мы исследовали, зависят ли химический состав и гидрологические параметры в значительной степени от генезиса подвешенной почвы, или они представляют собой единое почвенное явление с определенной предполагаемой экосистемной функцией. Их максимальная и полевая влагоемкость достигают сотен и даже тысяч процентов, что не может не приводить к мезофилизации микроклимата приствольных сред. Высокое содержание питательных веществ в подвешенных почвах чрезвычайно велико по сравнению с лесными почвами других климатических зон и должно быть отмечено как их важнейшая атрибутивная характеристика. Это еще раз подтверждает гипотезу о том, что суть эпифитного почвообразования заключается в том, что биотический цикл отрывается от земли и эволюционно перемещается в средние и верхние ярусы экосистемы тропического дождевого леса. Стволы деревьев в данном контексте представляют собой вертикально и субгоризонтально ориентированные фазовые интерфейсы, подобные материнским породам, а эпифитные почвы являются аналогами торфяных накоплений с чрезвычайно высокой влагоудерживающей способностью, что имеет чрезвычайно важное экологическое значение.

Keywords: suspended soils, epiphytic plants, tropical forest, Southeast Asia, hydrological parameters, elemental composition, stable isotope, подвешенные почвы, эпифитные растения, тропический лес, Юго-Восточная Азия, гидрологические параметры, элементный состав, стабильные изотопы

PDF    


References

Abakumov, E.V. & A.I. Popov 2005. Determination of the carbon and nitrogen contents and oxidizability of organic matter and the carbon of carbonates content in one soil sample. Eurasian Soil Science 38(2):165-172.

Abakumov, E.V. & A.K. Eskov 2023. Organic matter structural composition of vascular epiphytic suspended soils of South Vietnam. Applied Sciences 13:4473. CrossRef

Abakumov, E.V., O.A. Rodina & A.K. Eskov 2018. Humification and humic acid composition of suspended soil in oligotrophous environments in South Vietnam. Applied and Environmental Soil Science 2018:1-8. CrossRef

Abat, M., M.J. McLaughlin, J.K. Kirby & S.P. Stacey 2012. Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak. Malaysia. Geoderma 175-176:58-63. CrossRef

Arinushkina, E.V. 1970. Manual on chemical analysis of soils. MSU, Moscow, 488 pp. (in Russian) [Аринушкина Е.В. 1970. Руководство по химическому анализу почв: учебное пособие. М: МГУ. 488 с.].

Baldock, J.A., J.M. Oades, A.G. Waters, X. Peng, A.M. Vassallo & M.A. Wilson 1992. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 16(1):1-42. CrossRef

Bazilevich, N.I. & A.A. Titlyanova 2008. Biotic cycle on five continents: nitrogen and ash elements in natural terrestrial ecosystems. Izdatel'stvo SO RAN, Novosibirsk (in Russian). [Базилевич Н.И., Титлянова А.А. 2008. Биотический круговорот на пяти континентах: азот и зольные элементы в природных наземных экосистемах. Новосибирск: Изд-во Сибирского отделения Российской академии наук. 376 с.].

Benavides, A.M., J.H.D. Wolf & J.F. Duivenvoorden 2006. Recovery and succession of epiphytes in upper Amazonian fallows. Journal of Tropical Ecology 22(6):705-717. CrossRef

Benzing, D.H. 1996. Aerial roots and their environments. In: Plant roots: The hidden half [Y. Waisel, A. Eshel & U. Kafkafi, eds), pp. 875-894, Marcel Dekker, N.Y.

Benzing, D.H. 1990 Vascular epiphytes: General biology and related biota. Cambridge Univ. Press, Cambridge, 354 pp. CrossRef

Bockheim, J.G. & F.C. Ugolini 1990. A review of pedogenic zonation in well-drained soils of the southern circumpolar region. Quaternary Research 34(1):47-66. CrossRef

Botula, Y.D., E. Van Ranst & W.M. Cornelis 2014. Pedotransfer functions to predict water retention for soils of the humid tropics: a review. Revista Brasileira de Ciência do Solo 38:679-698. CrossRef

Bruijnzeel, L.A. 2004. Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture, Ecosystems & Environment 104(1):185-228. CrossRef

Chertov, O.G. 1978. On the classification of forest lands of the humid tropical zone of Vietnam. Lesovedenie 3:3-10 (in Russian). [Чертов О.Г. 1978. О классификации лесных земель влажного тропического пояса Вьетнама // Лесоведение. № 3. С. 3-10].

Shishov, L.L., V.D. Tonkonogov, I.I. Lebedeva & M.I. Gerasimova 2004. Classification and diagnostics of soils of Russia, Oikumena, Smolensk, 342 pp. (in Russian). [Шишов Л.Л., Тонконогов В.Д., Лебедева И.И., Герасимова М.И. 2004. Классификация и диагностика почв России . Смоленск: Ойкумена, 2004. 342 с.].

Dangerfield, C.R., N.M. Nadkarni & W.J. Brazelton 2017. Canopy soil bacterial communities altered by severing host tree limbs. PeerJ 5:e3773. CrossRef

Darocha, W.D., S.P. Ribeiro, F.S. Neves, G.W. Fernandes, M. Leponce & J.H.C. Delabie 2015. How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem? Myrmecia 21:83-92.

Deshcherevskaya, O.A., V.K. Avilov, Ba Duy Dinh, Cong Huan Tran & J.A. Kurbatova 2013. Modern climate of the Cát Tiên National Park (Southern Vietnam): climatological data for ecological studies. Izvestiya, Atmospheric and Oceanic Physics 49(8):819-838. CrossRef

Dmitriev, E.A. 1996. Soil and soil-like bodies. Eurasian Soil Science 29(3):275-282.

Dokuchaev, V.V. 1883. Russian Chernozem. Report to the Imperial Free Economic Society. Tipogafia Declerona i Evdokimova, St. Petersburg, 376 pp. (in Russian). [Докучаев В.В. 1883. Русский чернозем: Отчет Императорскому Вольному экон. о-ву. Санкт-Петербург: Императорское Вольное экон. о-во. 376 с.].

Enloe, H.A., S.A. Quideau, R.C. Graham, S.C. Sillett, S.W. Oh & R.E. Wasylishen 2010. Soil organic matter processes in old-growth redwood forest canopies. Soil Science Society of America Journal 74(1):161-171. CrossRef

Eskov, A.K., E.V. Abakumov, A.V. Tiunov, O.V. Kuznetsova, D.A. Dubovikov, N.G. Prilepsky, V.A. Antipina & A.N. Kuznetsov 2017. Ageotropic aerial root-traps of nest epiphytes and their role in suspended soils forming. Zhurnal Obshchei Biologii 78(3):54-68 (in Russian). [Еськов А.К., Абакумов Е.В., Тиунов А.В., Кузнецова О.В., Дубовиков Д.А., Прилепский Н.Г., Антипина В.А., Кузнецов А.Н. 2017. Агеотропные воздушные корни- улавливатели гнездовых эпифитов и их роль в формировании подвешенных почв // Журнал общей биологии. Т. 78, № 3. С. 54-68].

Eskov, A.K., V.G. Onipchenko, N.G. Prilepsky, E.V. Abakumov, G.L. Kolomeitseva, V.T. Nguyen & A.V. Tiunov 2019. Dependence of epiphytic community on autochthonous and allochthonous sources of nitrogen in three forest habitats of Southern Vietnam. Plant and Soil 443:565-574. CrossRef

Eskov, A.K., N.G. Prilepsky, V.A. Antipina, E.V. Abakumov & N. Van Thinh 2020. Formation of epiphytic communities in man-made forests of South Vietnam. Russian Journal of Ecology 51(3):206-214. CrossRef

Eskov, A.K., A.O. Zverev & E.V. Abakumov 2021. Microbiomes in suspended soils of vascular epiphytes differ from terrestrial soil microbiomes and from each other. Microorganisms 9(5):1033. CrossRef

Eskov, A.K., T.G. Elumeeva, V.D. Leonov, S.M. Tsurikov, V.A. Viktorova, N.G. Prilepsky & E.V. Abakumov 2023. The carbon isotope composition of epiphytes depends not only on their layers, life forms, and taxonomical groups but also on the carbon and nitrogen indicators of host trees. Plants 12(19):3500. CrossRef

Esmeijer-Liu, A.J., W.M. Kürschner, A.F. Lotter, J.T. Verhoeven & T. Goslar 2012. Stable carbon and nitrogen isotopes in a peat profile are influenced by early stage diagenesis and changes in atmospheric CO2 and N deposition. Water, Air, & Soil Pollution 223:2007-2022. CrossRef

Flores-Palacios, A. & J.G. Garcı'a-Franco 2006. The relationship between tree size and epiphyte species richness: testing four different hypotheses. Journal of Biogeography 33(2):323-330. CrossRef

Hoelscher, D., L. Köhler, A.I. van Dijk & L.S. Bruijnzeel 2004. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology 292:308-322. CrossRef

Hothorn, T., K. Hornik, M.A. van de Wiel & A. Zeileis 2008. Implementing a class of permutation tests: The coin package. Journal of Statistical Software 28(8):1-23. CrossRef

ISO 11047: 1998. Soil quality-determination of cadmium, chromium, cobalt, copper, lead, nickel and zinc in aqua regia extracts of soil-flame and electrothermal atomic absorption spectrometric methods. German Institute for Standardization, Berlin, Germany.

ISO 2003. Soil quality-determination of nitrate, nitrite and ammonium in field-moist soils by extraction with potassium chloride solution. Part 1: Manual method. International Organisation for Standardisation, Geneva, Switzerland.

Kapelkina, L.P. 2010. Pollutants in the soils of megacities. Problems and paradoxes of regulation. Ekologiya urbanizirovannykh territorii 3:13-19 (in Russian). [Капелькина Л.П. 2010 Загрязняющие вещества в почвах мегаполисов. Проблемы и парадоксы нормирования // Экология урбанизированных территорий. № 3. С. 13-19].

Kogel-Knabner, I. 1997. 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80:243-270. CrossRef

Kogel-Knabner, I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on. Soil Biology & Biochemistry 105:A3-A8. CrossRef

Köhler, L., C. Tobón, K.A. Frumau & L.S. Bruijnzeel 2007. Biomass and water storage dynamics of epiphytes in oldgrowth and secondary montane cloud forest stands in Costa Rica. Plant Ecology 193(2):171-184. CrossRef

Kopcik, G.N., S.V. Kopcik, I.E. Smirnova, A.D. Kudryavceva & K.A. Turbabina 2016. Response of forest ecosystems to reduction of atmospheric industrial emissions in the Kola Subarctic. Zhurnal obshchei biologii 77(2): 145-163 (in Russian). [Копцик Г.Н., Копцик С.В., Смирнова И.Е. Кудрявцева А.Д., Турбабина К.А. 2016. Реакция лесных экосистем на сокращение атмосферных промышленных выбросов в Кольской Субарктике // Журнал общей биологии. Т. 77, №. 2. С. 145-163].

Mamontov, V.G. & A.S. Mostovaya 2021. Elemental composition of forest litter of sod-podzolic soils of test plots of the Forest Experimental Dacha. AgroEcoInfo: Elektronnyi Nauchno-Proizvodstvennyj Zhurnal 2 (in Russian). [Мамонтов В.Г., Мостовая А.С. 2021. Элементный состав лесных подстилок дерновоподзолистых почв пробных площадей Лесной опытной дачи // АгроЭкоИнфо: Электронный научно-производственный журнал. № 2]. CrossRef

Mangiafico, S. 2022. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.4.13. https://CRAN.R-project.org/package=rcompanion

Marimon-Junior, B.H., J.D.V. Hay, I. Oliveras, H. Jancoski, R.K. Umetsu, T.R. Feldpausch, D.R. Galbraith, E.U. Gloor, O.L. Phillips, B.S. Marimon 2020. Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant and Soil 450:65-79. CrossRef

Medrado, E. & J. Lima 2014. Development of pedotransfer functions for estimating water retention curve for tropical soils of the Brazilian savanna. Geoderma Regional 1:59-66. CrossRef

Minin, E.A. & V.V. Starchenko (eds) 2005. Methodical Manual for drawing up small-scale maps of Quaternary formations for GOSGEOLCARTA-1000/3. VSEGEI, St. Petersburg, 190 pp. [Методическое пособие по составлению мелкомасштабных карт четвертичных образований к Госгеолкарте1000/ 3 / под. ред. Е.А. Минина и В.В. Старченко. СПб.: ВСЕГЕИ. 2005. 190 с.].

Murray, J., A. Smith, M. Simpson, K. Elizondo, J. Aitkenhead-Peterson & B. Waring 2023. Climate as well as branch-level processes drive canopy soil abundance and chemistry. Geoderma 438:116609. CrossRef

Nadkarni, N.M., D. Schaefer, T.J. Matelson & R. Solano 2004. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198:223-236. CrossRef

Nottingham, A.T., P. Meir, E. Velasquez & B.L. Turner 2020. Soil carbon loss by experimental warming in a tropical forest. Nature 584(7820):234-237. CrossRef

Novak, M., M. Stepanova, I. Jackova, M.A. Vile, R.K. Wieder, F. Buzek, ... & A. Komarek 2014. Isotopic evidence for nitrogen mobility in peat bogs. Geochimica et Cosmochimica Acta 133:351-361. CrossRef

Orlov, D.S. 1985. Soil chemistry: A textbook. Izdatel'stvo Moskovskogo Gosudarstvennogo Universiteta, Moscow, 376 pp. (in Russian). [Орлов Д.С. 1985. Химия почв: Учебник. М.: Изд-во Моск. ун-та, 376 с.].

Orlov, D.S., L.K. Sadovnikova & N.I. Sukhanova. 2005. Soil chemistry. Vysshaya shkola, Moscow (in Russian). [Орлов Д.С., Садовникова Л.К., Суханова Н.И. 2005. Химия почв. Москва: Высшая школа. 558 с.].

Panfilov, D.V. 1961. Insects in tropical forests of southern China. Izdatel'stvo Moskovskogo Gosudarstvennogo Universiteta, Moscow, 147 pp. (in Russian). [Панфилов Д.В. 1961. Насекомые в тропических лесах Южного Китая. М.: Изд-во МГУ. 147 с.].

Pócs, T. 1980. The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania. East Africa) [Asplenium nidus L., Microsorium punctatum (L.) Copel., Corticolous microepiphytes. Mossy elfin forest]. Acta Botanica Academiae Scientiarum Hungaricae 26(1-2):143-167.

Ponomareva, V.V. 1970. Forest as an eluvial-resistant type of vegetation. Botanicheskii Zhurnal 55(11):1585-1595. (in Russian). [Пономарева В.В. 1970. Лес как элювиально-устойчивый тип растительности // Ботанический журнал. Т. 55, № 11. С. 1585-1595].

Quideau, S.A., M.A. Anderson, R.G. Graham, O.A. Chadwick & S.E. Trumbore 2000. Soil organic matter processes: Characterization by 13C NMR and 14C measurements. Forest Ecology and Management 138:19-27. CrossRef

Rastvorova, O.G. 1983. Manual on soil physics. Izdatel'stvo Leningradskogo Gosudarstvennogo Universiteta, Leningrad, 195 pp. (in Russian). [Растворова О.Г. 1983. Физика почв. Ленинград: Изд-во ЛГУ. 195 с.].

Reshetnikova, T.V. 2011. Forest litter as a depot of biogenic elements. Vestnik KrasGAU 12:74-81 (in Russian). [Решетникова Т.В. 2011. Лесные подстилки как депо биогенных элементов // Вестник КрасГАУ. № 12. С. 74-81].

Rieuwerts, J.S. 2007. The mobility and bioavailability of trace metals in tropical soils: a review. Chemical Speciation & Bioavailability 19(2):75-85. CrossRef

Rousk, J. & N.M. Nadkarni 2009. Growth measurements of saprotrophic fungi and bacteria reveal differences between canopy and forest floor soils. Soil Biology & Biochemistry 41:862-865. CrossRef

Sergeeva, T.K., L.B. Kholopova & N.T. Tyen 1991. Pedobionts related to "suspended" soils of a tropical epiphyte Asplenium nidus L. Tropical Zoology 4(1):31-44. CrossRef

Skjemstad, J.O., P. Clarke, A.J. Golchin & M. Oades 1997. Characterization of soil organic matter by solid-state 13C NMR spectroscopy. In: Driven by Nature: Plant Litter Quality and Decomposition (G. Cadisch, K.E. Giller & K.E. Giller, eds), pp. 253-271, CAB International.

Smagin, A.V., N.B. Sadovnikova, E.A. Belyaeva, K.V. Korchagina & V.N. Krivtsova 2023. Simulation modeling and practical use of the hydrological function of detritus in soil-engineering technologies. Moscow University Soil Science Bulletin 78(4):396-409. CrossRef

van Noordwijk, M., C. Cerri, P.L. Woomer, K. Nugroho & M. Bernoux 1997. Soil carbon dynamics in the humid tropical forest zone. Geoderma 79(1-4):187-225. CrossRef

Victoriano-Romero, E., J.G. García-Franco, K. Mehltreter, S. Valencia-Díaz, V.H. Toledo-Hernández & A. Flores-Palacios 2020. Epiphyte associations and canopy soil volume: nutrient capital and factors influencing soil retention in the canopy. Plant Biology 22(3): 541-552. CrossRef

Victoriano-Romero, E., S. Valencia-Díaz, J.G. García-Franco, K. Mehltreter, V.H. Toledo-Hernández & A. Flores-Palacios 2023. Interactions between epiphytes during canopy soil formation: an experiment in a lower montane cloud forest of southeast Mexico. Plant Biology 25(3):468-477. CrossRef

GOST 54650-2011. 2013. Soils. Determination of mobile phosphorus and potassium compounds by Kirsanov method modified by ClNAO. Standartinform, Moscow, 7 pp. (in Russian). [ГОСТ 54650-2011. 2013. Почвы. Определение подвижных соединений фосфора и калия по методу Кирсанова в модификации ЦИНАО. Москва: Стандартинформ. 7 с.].

Werner, F.A., J. Homeier, M. Oesker & J. Boy 2012. Epiphytic biomass of a tropical montane forest varies with topography. Journal of Tropical Ecology 28:23-31. CrossRef

Xu, S., Y. Wang, X. Yu, Z. Cai & M. Ren 2024. Suspended soils enrich local forest floor soils during the rainy season in a tropical monsoon rainforest of Hainan Island, South China. Frontiers in Plant Science 15:1415754. CrossRef

Zotz, G. 1999. What are backshoots good for? Seasonal changes in mineral. carbohydrate and water content of different organs of the epiphytic orchid Dimerandra emarginata. Annals of Botany 84:791-798. CrossRef

Zotz, G. 2016. Plants on plants: The biology of vascular epiphytes. Springer, Heidelberg, Berlin, 281 pр. CrossRef





© The Author(s). 2024 - 2025 Open Access (CC) BY-NC license: https://creativecommons.org/licenses/by-nc/4.0/