Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation 2022. 11(2):19-23
Article first published online: 21 OCT 2022 | DOI: 10.17581/bp.2022.11215

Genetic diversity of Rhododendron redowskianum Maxim., a rare species of Siberian and Far Eastern rhododendrons, based on plastid and nuclear DNA markers

Maria A. Polezhaeva 1 ORCID, Makar V. Modorov 1 ORCID, Olga A. Mochalova 2 ORCID, Maria G. Khoreva 2 ORCID, Marina N. Koldaeva 3 ORCID & Elena A. Marchuk 3 ORCID

1 Institute of Plant and Animal Ecology, Ural Branch RAS, Ekaterinburg, Russia
2 Institute of Biological Problems of the North FEB RAS, Magadan, Russia
3 Botanical Garden-Institute FEB RAS, Vladivostok, Russia

The genetic diversity of 78 individuals of Rhododendron redowskianum Maxim. from five natural populations of different territories of the Far East – Magadan Region, Sakhalin Region, Primorye Territory and Northeast China was studied. Variability of the species according to five markers of plastid DNA was very low. The only one mutation was detected in one of the markers in a singl individual from Sikhote-Alin population. Analysis of the polymorphism of eight nuclear microsatellites, on the contrary, revealed a high level of diversity in all samples (mean values: Aa = 6.44, Ae = 4.43, Ho = 0.514, He = 0.523) and high interpopulation differentiation (FST = 0.299, p < 0.001). Population structure analysis identified four genetic clusters that correspond to the four geographic areas represented. Relationship analysis based on plastid DNA data revealed the ancestral position of R. redowskianum in relation to the closely related species R. camtschaticum Pall. s.l.

Полежаева М.А., Модоров М.В., Мочалова О.А., Хорева М.Г., Колдаева М.Н., Марчук Е.А. Генетическое разнообразие редкого вида рододендрона Сибири и Дальнего Востока Rhododendron redowskianum Maxim. по маркерам хлоропластной и ядерной ДНК. Изучено генетическое разнообразие 78 образцов редкого вида Rhododendron redowskianum Maxim. из пяти природных популяций различных регионов Дальнего Востока – Магаданской и Сахалинской областей, Приморского края и северо-восточного Китая. Изменчивость вида по пяти маркерным фрагментам пластидной ДНК оказалась очень низкой. По одному из маркеров выявлена единичная мутация в одном образце из Сихотэ-Алиня. Анализ полиморфизма восьми ядерных микросателлитов, напротив, показал высокий уровень разнообразия во всех выборках (средние значения числа аллелей Aa=6.44, эффективного числа аллелей Ae=4.43, наблюдаемой и ожидаемой гетерозиготности Ho=0.514, He=0.523, соответственно) и высокую межпопуляционную дифференциацию (FST = 0.299, p < 0.001). Анализ популяционной структуры выявил четыре генетических кластера, которые соответствуют четырем представленным географическим районам. Анализ родства, проведенный по данным хлоропластной ДНК, выявил сестринское положение R. redowskianum по отношению к близкородственному виду R. camtschaticum Pall. s.l.

Keywords: Far East, plastid DNA, genetic variability, nuclear microsatellites, population structure, генетическая изменчивость, Дальний Восток, популяционная структура, пластидная ДНК, ядерные микросателлиты

PDF   


References

Aleksandrova, M.S. 1975. Rhododendrons of the natural flora of the USSR. Nauka, Moscow, 112 pp. (in Russian). [Александрова М.С. 1975. Рододендроны природной флоры СССР. М.: Наука. 112 с.].

Charrier, O., P. Dupont, A. Pornon & N. Escaravage 2014. Microsatellite marker analysis reveals the complex phylogeographic history of Rhododendron ferrugineum (Ericaceae) in the Pyrenees. PloS One 9:e92976. CrossRef

Devey, M.E., J.C. Bell, D.N. Smith, D.B. Neale & G.F. Moran 1996. A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers. Theoretical and Applied Genetics. 92:673-679. CrossRef

Dumolin-Lapegue, S., M.-H. Pemonge & R.J. Petit 1997. An enlarged set of consensus primers for the study of organelle DNA in plants. Molecular Ecology 6:393-397. CrossRef

Earl, D.A. & B.M. von Holdt 2012. Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources 4:359-361. CrossRef

Gao, L.M., Z. Lid, Q. Zhang & J.B. Yang 2002. Infrageneric and sectional relationships in the genus Rhododendron (Ericaceae) inferred from ITS sequence data. Acta Botanica Sinica 44:1351-1356.

Gibbs, D., D. Chamberlain & G. Argent 2011. The Red List of Rhododendrons. Botanic Gardens Conservation International, Richmond, UK, 128 pp.

Goetsch, L.A., A.J. Eckert & B.D. Hall 2005. The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Systematic Botany 30(3):616-626. CrossRef

Hall, T.A. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98.

Hamilton, M.B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology 8:521-523.

Irving, E. & R. Hebda 1993. Concerning the origin and distribution of rhododendrons. Journal American Rhododendron Society 47:139-162.

Johnson, L.A. & D.E. Soltis 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Annals of the Missouri Botanical Garden 82:149-175. CrossRef

Kwak, M., H. Won, J. Hong & B.Y. Lee 2015. Isolation and characterization of 19 novel microsatellite loci in Rhododendron aureum and Rhododendron brachycarpum (Ericaceae). Biochemical Systematics and Ecology 61:520-523. CrossRef

Mazurenko, M.T. 1980. Rhododendrons of the Far East: structure and morphogenesis. Nauka, Moscow, 229 pp. (in Russian). [Мазуренко М.Т. 1980. Рододендроны Дальнего Востока: структура и морфогенез. М.: Наука. 229 с.].

Nei, M. 1972. Genetic distance between populations. American Naturalist 106:283-292. CrossRef

Oliver, M., J. Metzgar & S. Ickert-Bond 2014. Morphologically diverse but with surprisingly little genetic structure: The evolutionary history of three closely related species of Therorhodion. Poster. https://doi.org/10.13140/2.1.3697.1209

Peakall, R. & P.E. Smouse 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288-295. CrossRef

Petukhova, I.P. 2005. Rhododedndrons on the south of Primorskii krai. Introduction, culture. BSI DVO RAN, Vladivostok, 131 pp. (in Russian). [Петухова И.П. 2005. Рододендроны на юге Приморского края. Интродукция, культура. Владивосток: БСИ ДВО РАН. 131 с.].

Plantarium 2007-2022. Rhododendron redowskianum Maxim. In: Plantarium: plants and lichens of Russia and neighboring countries: open online galleries and plant identification guide, 2007-2022. Available from: https://www.plantarium.ru/page/view/item/31870.html Last accessed 25.08.2022.

Polezhaeva, M.A., M.V. Modorov, A.N. Polezhaev & E.A. Marchuk 2020. Intraspecific structure of Rhododendron camtschaticum Pall. on the Kamchatka Peninsula: Genetic Aspect. Russian Journal of Genetics 56(6):758-762. CrossRef

Polezhaeva, M.A., N.A. Tikhonova, E.A. Marchuk, M.V. Modorov, M.N. Ranyuk, A.N. Polezhaev, N.K. Badmayeva & V.L. Semerikov 2021. Genetic structure of a widespread alpine shrub Rhododendron aureum (Ericaceae) across East Asia. Journal of Plant Research 34(1):91-104. CrossRef

Pritchard, J.K., M. Stephens & P. Donnelly 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959. CrossRef

Ronquist, F. & J.P. Huelsenbeck 2003. MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572-1574. CrossRef

Sarwar, A.G. & H. Takahashi 2013. Pollen morphology of Rhododendron L. and related genera and its taxonomic significance. Bangladesh Journal of Plant Taxonomy 20(2):185-199. CrossRef

Taberlet, P.T., L. Geilly, G. Patou & J. Bouvet 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Molecular Biology 17:1105-1109. CrossRef

Tan, X.X., Y. Li & X.J. Ge 2009. Development and characterization of eight polymorphic microsatellites for Rhododendron simsii Planch (Ericaceae). Conservation Genetics 10:1553-1555. CrossRef

Wang, X.Q., Y. Huang & C.L. Long 2013. Assessing the genetic consequences of flower-harvesting in Rhododendron decorum Franchet (Ericaceae) using microsatellite markers. Biochemical Systematics and Ecology 50:296-303. CrossRef

Wang, Y.-G., G.-Z. Li, W.-J. Zhang, J. You & J.-K. Chen 2007a. A systematic study of the genus Rhododendron (Ericaceae) using micromorphological characters of fruit surface and seed coat. Acta Phytotaxonomica Sinica 45(1):21-38.

Wang, Y.-G., G.-Z. Li, W.-J. Zhang, J. You & J.-K. Chen 2007b. Leaf epidermal features of Rhododendron (Ericaceae) from China and their systematic significance. Acta Phytotaxonomica Sinica 45(1):1-20.

Yurtsev, B.A. 1968. Flora of Suntar-Khayata. Problems of the history of alpine landscapes in the North-East of Siberia. Nauka, Leningrad, 235 pp. (in Russian). [Юрцев Б.А. 1968. Флора Сунтар-Хаята. Проблемы истории высокогорных ландшафтов Северо-Востока Сибири. Л.: Наука. 235 с.].





© The Author(s). 2022 Open Access (CC) BY-NC license: https://creativecommons.org/licenses/by-nc/4.0/