Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation 2022. 11(2):89-93
Article first published online: 17 OCT 2022 | DOI: 10.17581/bp.2022.11216

Phytoextraction of Chromium VI by Raphanus sativus L. under exogenous application of citric acid

Mohammed Bouhadi 1,2 ORCID, M’hammed Elkouali 2 ORCID, Mohammed Talbi 2 ORCID, Fatiha Amegrissi 2 ORCID & Hassan Fougrach 1 ORCID

1 Laboratory of Ecology and Environment, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, Casablanca, Morocco
2 Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, Casablanca, Morocco

The pollution of environment by toxic heavy metals has increased dramatically over the past decades due to various sources of contamination, mainly industrial and human activities. Soil is the main recipient of air and water contamination. In this study, we evaluated the ability of radish plants to accumulate chromium VI (Cr(VI)) (150 ppm) under the application of citric acid (CA) (15 mM). The results showed that Cr(VI) reduced shoot dry weight, root dry weight, hypocotyl dry weight, and total chlorophyll content. On the other hand, Cr(VI) increased H2O2, malondialdehyde, and antioxidant activities of the radish plant. However, the application of CA improved the growth and physiological parameters and antioxidant content (superoxide dismutase 5 % and 4 %, peroxidase content 24 % and 4.25 %, catalase 38 % and 28 %, and ascorbate peroxidase 4 % and 35 %) in root and shoot part respectively, and increases the accumulation of Cr(VI) in different parts of the radish plant.

Бухади М., Элькуали М., Талби М., Амегрисси Ф., Фуграх Х. Фитоэкстракция хрома VI с помощью Raphanus sativus L. при экзогенном применении лимонной кислоты. За последние десятилетия загрязнение окружающей среды токсичными тяжелыми металлами из различных источников, главным образом, промышленной и человеческой деятельности, резко возросло. Почва является основным поглотителем загрязнений из воздуха и воды. В данном исследовании мы оценили способность растений редиса накапливать хром VI (Cr(VI)) (150 ppm) под действием лимонной кислоты (ЛК) (15 mM). Результаты показали, что Cr(VI) снижал сухой вес побегов, сухой вес корней, сухой вес гипокотиля и общее содержание хлорофилла. С другой стороны, Cr(VI) увеличил H2O2, малондиальдегид и антиоксидантную активность растений редиса. Однако применение ЛК улучшало рост и физиологические параметры и содержание антиоксидантов (супероксиддисмутазы 5 % и 4 %, пероксидазы 24 % и 4,25 %, каталазы 38 % и 28 %, аскорбатпероксидазы) 4 % и 35 %) в корнеплодах и побегах соответственно, и увеличивало накопление Cr(VI) в различных частях растения редиса.

Keywords: heavy metals, chromium VI, citric acid, antioxidants activities, radish, тяжелые металлы, хром VI, лимонная кислота, антиоксидантная активность, редис

PDF   


References

Aebi, H., 1984. Catalase in vitro methods. Enzymology 105: 121-126. CrossRef

Afshan, S., S. Ali, S.A. Bharwana, M. Rizwan, M. Farid, F. Abbas, M. Ibrahim, M.A. Mehmood & G.H. Abbasi 2015. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research 22(15):11679-11689. CrossRef

Anjum, S.A., U. Ashraf, I. Khan, M.F. Saleem & L.C. Wang 2016. Chromium toxicity induced alterations in growth, photosynthesis, gas exchange attributes and yield formation in maize. Pakistan Journal of Agricultural Sciences 53:751-757. CrossRef

Ashraf, U., A.S. Kanu, Q. Deng, Z. Mo, S. Pan, H. Tian & X. Tang 2017. Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Frontiers in Plant Science 8:259. CrossRef

Bouhadi, M., A. Ainane, M. Elkouali, M. Talbi, O. Cherifi, A. El Yaacoubi & T. Ainane 2019. Role of the macroalgae Corallina officinalis in alleviating the toxicity of hexavalent chromium on Vicia faba L. Journal of Analytical Sciences and Applied Biotechnology 1(2):60-64.

Bursztyn Fuentes, A.L., C. José, A. de los Ríos, L.I. do Carmo, A.F. de Iorio & A.E. Rendina 2018. Phytoextraction of heavy metals from a multiply contaminated dredged sediment by chicory (Cichorium intybus L.) and castor bean (Ricinus communis L.) enhanced with EDTA, NTA, and citric acid application. International Journal of Phytoremediation 20(13):1354-1361. CrossRef

Choudhury, S., P. Panda, L. Sahoo & S.K. Panda 2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior 8:23681. CrossRef

Clesceri, L.S., A.E. Greenberg & A.D. Eaton 1998. Standard methods for the examination of water and wastewater, A.P.H. Association, Washington, 366 pp.

Ehsan, S., S. Ali, S. Noureen, K. Mahmood, M. Farid, W. Ishaque, M.B. Shakoor & M. Rizwan 2014. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicology and Environmental Safety 106:164-172. CrossRef

Farid, M., S. Ali, M. Rizwan, Q. Ali, F. Abbas, S.A.H. Bukhari & L. Wu 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicology and Environmental Safety 145:90-102. CrossRef

Farid, M., S. Farid, M. Zubair, M. Rizwan, H.K. Ishaq, S. Ali, U. Ashraf, H.A.S. Alhaithloul, S. Gowayed, F.P. Filice, J.D. Henderson, M.S. Li & Z. Ding 2019. Correlating live cell viability with membrane permeability disruption induced by trivalent chromium. ACS Omega 4(1):2142-2151. CrossRef

Hu, L., Z. Zhang, Z. Xiang & Z. Yang 2016. Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Frontiers in Plant Science 7:179. CrossRef

Ismail, M., M.I. Khan, K. Akhtar, J. Seo, M.A. Khan, A.M. Asiri & S.B. Khan 2019. Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution. Journal of Materials Science: Materials in Electronics 30(8):7367-7383. CrossRef

Jana, S. & M. Choudhuri 1981. Glycolate metabolism of three submerged aquaticangiosperms during aging. Aquatic Botany 12:345-354. CrossRef

Khadraji, A, M. Bouhadi & C. Ghoulam 2020. Effect of soil available phosphorus levels on chickpea (Cicer arietinum L.) - rhizobia symbiotic association. Legume Research 43(6):878-883.

Lichtenthaler, H.K. 1987. Chlorophyll sand carotenoids: pigments of photosynthetic bio membranes. Methods in Enzymology 148:350-382. CrossRef

Lin, C.-C. & Y.-L. Huang 2015. Chromium, zinc and magnesium status in type 1 diabetes. Current Opinion in Clinical Nutrition and Metabolic Care 18(6):588-592. CrossRef

Maqbool, A., S. Ali, M. Rizwan, W. Ishaque, N. Rasool, M.Z. Rehman, A. Bashi, M. Abid & L. Wu 2018. Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environmental Science and Pollution Research 25(11):10848-10856. CrossRef

Metzner, H., H. Rau & H. Senger 1965. Untersuchungenzursynchronisierbaketieinzel-nerpigmentmangel-mutation von chlorella. Planta 65:186-194. CrossRef

Mohammed, B., E. M'hammed, T. Mohammed & A. Tarik 2021a Effect of Chromium VI on edible plants and their health risks: case of Radish (Raphanus sativus L.). In: E3S Web of Conferences, vol. 319. doi:10.1051/e3sconf/202131901109. CrossRef

Mohammed, B., T. Mohammed, E. M'hammed & A. Tarik 2021b. Physiological and physico-chemical study of the effect of chromium VI on the nutritional quality of maize (Zea mays L). Procedia Computer Science 191:463-468. CrossRef

Najeeb, U., G. Jilani, S. Ali, M. Sarwar, L. Xu & W. Zhou 2011. Insights into cadmium induced physiological and ultra-structural disorders in Juncuseffusus L. and its remediation through exogenous citric acid. Journal of Hazardous Materials 186:565-574. CrossRef

Nakano, Y. & K. Asada 1981. Hydrogen peroxide scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant & Cell Physiology 22:867-880.

Osmolovskaya, N., V.V. Dung & L. Kuchaeva 2018. The role of organic acids in heavy metal tolerance in plants. Biological Communications 63:9-16. CrossRef

Savicka, M. & N. Skute 2010. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:26-33. CrossRef

Shahid, M, S. Shamshad, M. Rafiq, S. Khalid, I. Bibi, N.K. Niazi, C. Dumat & M.I. Rashid 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513-533. CrossRef

Shakoor, M.B., S. Ali, A. Hameed, M. Farid, S. Hussain, T. Yasmeen, U. Najeeb, S.A. Bharwana & G.H. Abbasi 2014. Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicology and Environmental Safety 109:38-47. CrossRef

Sinhal, V.S. 2010. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). Journal of Environmental Biology 31:255-259.

Soliman, M.H. 2019. Efficacy of Zea mays L. for the management of marble effluent contaminated soil under citric acid amendment; morpho-physiological and biochemical response. Chemosphere 240:124930. CrossRef

Wuana, R. & R.F. Okieimen 2010. Removal of heavy metals from a contaminated soilusing organic chelating acids. International Journal of Environmental Science and Technology 7:485-496. CrossRef

Zhang, X.Z. 1992. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Research Methodology of Crop Physiology (X.Z. Zhang, ed.), pp. 208-211. Beijing Agric Press, Beijing.




© The Author(s). 2022 Open Access (CC) BY-NC license: https://creativecommons.org/licenses/by-nc/4.0/