Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation 2020.9(2):113-119
Article first published online: 17 AUG 2020 | DOI: 10.17581/bp.2020.09208

Floral ecology, floral visitors and breeding system of Gandharaj lemon (Citrus × limon L. Osbeck)

Ujjwal Layek1, Arijit Kundu2 & Prakash Karmakar2

1 Department of Botany, Rampurhat College, Birbhum, India
2 Department of Botany & Forestry, Vidyasagar University, Midnapore, India

We studied the floral ecology, floral visitors and breeding system of Citrus × limon in West Bengal, India. We calculated a coefficient of pollination deficit (D) and also estimated the values of ‘relative pollinator service (RPS)’ to determine primary pollinators of the plant species. The cultivar is fully self-compatible and produces protandric hermaphrodite flowers and male flowers with considerable amount of floral rewards. Several insects like honey bees, solitary bees, carpenter bees, flies and butterflies visited the flowers. Among those, primary pollinators were Halictus sp. and Nomia sp., and important secondary pollinators were Apis dorsata and Xylocopa fenestrata. Considering the visitors’ group, the cultivar is principally pollinated by solitary bees. Besides diverse floral visitors, the cultivar showed medium pollination deficit (D = 0.49) and resulting in low fruit-set. Furthermore, premature fruit abortion is also high in all pollination treatments which lead to a low fruit-set of this lemon variety in West Bengal.

Лаек, У., Кунду, А., Кармакар, П. Экология цветения, посетители цветка и система размножения Гандхараджского лимона (Citrus × limon L. Osbeck). Исследована экология цветения, режим посещений цветка и система размножения Citrus × limon в Западной Бенгалии, Индия. Для определения первичных опылителей вида мы рассчитали коэффициент дефицита опыления (D), а также оценили значения «относительного вклада опылителей» (RPS). Сорту свойственно самоопыление, в результате которого появляются протандрические гермафродитные цветки и мужские цветки со значительным количеством тычинок. Ряд насекомых, таких как медоносные пчелы, одиночные пчелы, плотничьи пчелы, мухи и бабочки, посетил цветки. Среди них первичными опылителями были Halictus sp. и Nomia sp., и важными вторичными опылителями были Apis dorsata и Xylocopa fenestrata. Установлено, что сорт в основном опыляется группой одиночных пчел. При всем разнообразии посетителей, сорт показал средний дефицит опыления (D = 0,49) и, как следствие, низкое плодоношение. Кроме того, преждевременное прерывание развития плодов сохранялось при всех вариантах опыления, которые приводили к низкой урожайности этого сорта лимона в Западной Бенгалии.

Keywords: pollination deficit, relative pollinator service, self-compatible, solitary bee, дефицит опыления, относительный вклад опылителя, самоопыление, одиночная пчела

PDF


References

Agustí, M., F. García-Marí & J.L. Guardiola 1982. The influence of flowering intensity on the shedding of reproductive structures in sweet orange. Scientia Horticulturae 17:343-352. CrossRef

Ashman, T.L., T.M. Knight, J.A. Steets, P. Amarasekare, M. Burd, D.R. Campbell, M.R. Dudash, M.O. Johnston, S.J. Mazer, R.J. Mitchell, M.T. Morgan & W.G. Wilson 2004. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408-2421. CrossRef

Baker, H.G. & I. Baker 1979. Starch in angiosperm pollen grains and its evolutionary significance. American Journal of Botany 66:591-600. CrossRef

Bodlan, I. & M. Armad 2015. Insect pollinators visiting citrus (Citrus limon) and avocardo (Persea americana) fruit trees. Asian Journal of Agriculture and Biology 3:23-27.

Cruden, R.W. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32-46. CrossRef

Dafni, A. 1992. Pollination Ecology: A Practical Approach. Oxford University Press, Oxford.

Elzinga, J.A., A. Atlan, A. Biere, L. Gigord, A.E. Weis & G. Bernasconi 2007. Time after time: flowering phenology and biotic interactions. Trends in Ecology and Evolution 22: 432-439. CrossRef

Erickson, L.C. & B.L. Brannaman 1960. Abscission of reproductive structures and leaves of orange trees. Proceeding of the American Society for Horticultural Science 75:222-229. CrossRef

Free, J.B. 1993. Insect Pollination of Crops. 2nd edition. Academic Press, London. Gaines-Day, H.R. & C. Gratton 2015. Biotic and abiotic factors contribute to cranberry pollination. Journal of Pollination Ecology 15:15-22. CrossRef

Gentry, A.H. 1974. Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64-68. CrossRef

Goldschmidt, E.E. & S.P. Monselise 1977. Physiological assumptions toward the development of a citrus fruiting model. Proceeding of the International Society of Citriculture 2: 668-672.

Hilgeman, R.H., J.A. Dunlap & G.C. Sharples 1967. Abscission of reproductive structures and leaves of orange trees. Proceedings of the American Society for Horticultural Science 75:222-229.

Karmakar, P. 2013. Pollination biology of Citrus aurantiifolia (Christm.) Swingle: a medicinally important fruit plant. International Journal of Innovative Research and Development 2: 138-142.

Koo R.C.J. 1967. Importance of moisture control in citrus groves. Citrus World 13:16.

Kudo, G. 2006. Flowering phonologies of animal-pollinated plants: reproductive strategies and agents of selection. In: Ecology and Evolution of Flowers, (L.D. Harder & S.C.H. Barrett, eds.), pp. 139-158. Oxford University Press, New York.

Kumatkar, R.B., A.K. Godara & V.K. Sharma 2016. Studies on floral biology and breeding behavior of sweet orange[Citrus sinensis (L.) Osbeck.]. The Bioscan 11:543-546.

Malerbo-Souza, D.T., R.H. Nogueira-Couto & L.A. Couto 2003. Pollination in orange sweet crop (Citrus sinensis L. Osbeck, var. pera-rio). Brazilian Journal of Veterinary Research and Animal Science 40:237-242. CrossRef

Mehouachi, J., D. Serna, S. Zaragoza, M. Agusti, M. Talon & E. Primo-Millo 1995. Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Science 107:189-197. CrossRef

Monselise, S.P. 1986. Citrus. In: Handbook of fruit set and development, (S.P. Monselise, ed.), pp. 87-108. CRC Press, Boca Raton.

Nascimento, E.T., R. Pérez-Malf, R.A. Guimarães & M.A. Castellani 2011. Diversity of flowers visiting bees of Citrus in Salinas, state of Minus Gerais. Revista Brasileira de Fruticultura 33: 111-117. CrossRef

Ngo, B.X. 2001. Study on the self-incompatibity in Citrus (Rutaceae) with special emphases on the pollen tube growth and allelic variation. Ph. D. Thesis. Kyushu University, Fukuoka.

Ollerton, J., R. Winfree & S. Tarrant 2011. How many flowering plants are pollinated by animals? Oikos 120:321-326. CrossRef

Opler, P.A., H.G. Baker & G.W. Frankie 1980. Plant reproductive characteristics during secondary succession in Neotropical lowland forest ecosystems. Biotropica 12:40-46. CrossRef

Raduski, A.R., E.B. Haney & B. Igic 2011. The expression of self-incompatibility in angiosperms is bimodal. Evolution 66:1275-1283. CrossRef

Ribeiro, G.S., E.M. Alves & C.A.L. Carvalho 2016. Biology of pollination of Citrus sinensis variety 'Pera Rio'. Revista Brasileira de Fruticultura 39:e-033. CrossRef

Routley, M.B., R.I. Berlin & B.C. Husband 2004. Correlated evolution of dichogamy and self-incompatibility: A phylogenetic approach. International Journal of Plant Sciences 165:983-993. CrossRef

Spears, E.E. 1983. A direct measure of pollinator effectiveness. Oecologia 57:196-199. CrossRef

Yamamoto, M., T. Kubo & S. Tominaga 2006. Self- and cross-incompatibility of various Citrus accessions. Journal of the Japanese Society for Hortcultural Science 75:372-378. CrossRef

Zucconi, F., S.P. Monselise & R. Goren 1978. Growth abscission relationships in developing orange fruit. Scientia Horticulturae 9:137-146. CrossRef





© 2016-2020 Botanica Pacifica