Botanica Pacifica

Research papers

Botanica Pacifica. A journal of plant science and conservation Preprint
Article first published online: 31 MAY 2019 | DOI: 10.17581/bp.2019.08202

Phenolic compounds and antimicrobial properties of Begonia grandis Dryand. subsp. grandis leaves

Evgeniya A. Karpova 1, Alexander A. Krasnikov 1, Tatyana D. Fershalova 1, Elena V. Baikova 1, Anastasia A. Petruk 1 & Yulia L. Yakimova 2

1 Central Siberian Botanical Garden SB RAS, Novosibirsk, Russia
2 State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia


We studied the leaves of Begonia grandis Dryand. subsp. grandis, the northernmost and most cold-resistant representative of the predominantly tropical genus Begonia, by histochemical methods. In glandular and nonglandular trichomes as well as in the epidermal cells of B. grandis Dryand. subsp. grandis leaves, phenolic compounds, including flavonoids, as well as terpenoids and carbonyl compounds were detected. The patterns of phenolic compounds in the acetone and ethanol leaf exudates and in leaves as a whole were similar and contained oxalic, citric, and gallic acids, isoquercitrin, and orientin. Concentrations of phenolic compounds in the acetone and ethanol exudates constituted 0.10 % and 2.59 % of all phenolic compounds in the leaves, respectively. Antimicrobial effects of the aqueous ethanol extract and of the ethanol exudate against reference strains of Bacillus subtilis, Staphylococcus aureus, and Candida albicans were detected at the disc contents of 50.0 and 45.8 μg, respectively. The observed set of characteristics can be used in a targeted search for highly antimicrobial species of Begoniaceaе.

Карпова Е.А., Красников А.А., Фершалова Т.Д., Байкова Е.В., Петрук А.А., Якимова Ю.Л. Фенольные соединения и антимикробные свойства листьев Begonia grandis Dryand. subsp. grandis. С помощью гистохимических методов исследованы листья Begonia grandis Dryand. subsp. grandis – самого северного и холодоустойчивого представителя преимущественно тропического рода Begonia. В железистых и нежелезистых трихомах, а также в эпидермальных клетках листьев выявлены фенольные соединения, в том числе флавоноиды, а также терпеноиды и карбонильные соединения. Фенольные соединения в ацетоновом и этанольном экссудатах листьев, а также листьях в целом имеют сходный состав, содержащий щавелевую, лимонную и галловую кислоты, изокверцитрин и ориентин. Концентрации фенольных соединений в ацетоновом и этанольном экссудатах составляют 0,10 % и 2,59 % от суммы фенольных соединений листьев, соответственно. Выявлено антимикробное действие водно-спиртового экстракта и этанольного экссудата на тестовые штаммы Bacillus subtilis, Staphylococcus aureus и Candida albicans при содержании 50,0 мкг и 45,8 мкг на диск, соответственно. Изученная система признаков может быть использована для направленного поиска видов Begoniaceaе с высокой антимикробной активностью.

Keywords: Begonia grandis subsp. grandis, flavonoids, orientin, oxalic acid, antimicrobial activity, leaf exudate, trichomes, флавоноиды, ориентин, щавелевая кислота, антимикробная активность, экссудат листьев, трихомы

PDF


References

Agati, G., P. Matteini, A. Goti & M. Tattini 2007. Chloroplast located flavonoids can scavenge singlet oxygen. New Phytologist 174(1):77−89. CrossRef

Andersen, Ø.M. & K.R. Markham (ed.) 2006. Flavonoids: Chemistry, Biochemistry and Applications. CRC Press / Taylor & Francis, Boca Raton. 1198 pp.

Chalas, J., C. Claise, M. Edeas, C. Messaoudi, L. Vergnes, A. Abella & A. Lindenbaum 2001. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation. Biomedicine & Pharmacotherapy 55(1):54−60. CrossRef

Chalker-Scott, L. & L.H. Fuchigami 1989. The role of phenolic compounds in plant stress responses. In: Low temperature stress physiology in crops, (P.H. Li, ed.), pp. 67−79, CRC Press Inc., Boca Raton. CrossRef

Chehab, E.W., R. Kaspi, T. Savchenko, H. Rowe, F. Negre-Zakharov, D. Kliebenstein & K. Dehesh 2008. Distinct roles of Jasmonates and Aldehydes in plant-defense responses. PLoS ONE 3(4): e1904. CrossRef

Cheynier, V., G. Comte, K.M. Davies, V. Lattanzio & S. Martens 2013. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry 72:1−20. CrossRef

Cilius, M., K. Ramanauskien & V. Briedis 2013. Release of propolis phenolic acids from eemisolid formulations and their penetration into the human skin in vitro. Evidence-Based Complementary and Alternative Medicine Article ID 958717, 7 pp. CrossRef

Combrinck, S., G.W. Du Plooy, R.I. McCrindle & B. M. Botha 2007. Morphology and histochemistry of the glandular trichomes of Lippia scaberrima (Verbenaceae). Annals of Botany 99:1111-1119. CrossRef

Dai, G.H., M. Nicole, C. Andary, C. Martinez, E. Bresson, B. Boher, J.F. Daniel & J.P. Geiger 1996. Flavonoids accumulate in cell walls, middle lamellae and calloserich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiological and Molecular Plant Pathology 49:285-306. CrossRef

Dardick, C. & P. Ronald 2006. Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathogens 2, e2. CrossRef

David, R. & J.P. Carde 1964. Coloration différentielle des inclusions lipidiques et terpéniques des pseudophylles du Pin maritime au moyen du réactif Nadi. Comptes rendus de l'Académie des Sciences 258:1338−1340.

English, S., W. Greenaway & F.R. Whatley 1992. Analysis of phenolics of bud exudate of Populus tristis by GC/MS. Zeitschrift für Naturforschung 47c: 512−515. CrossRef

EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing. Version 6.0. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/Version_5/Manual_v_6.0_EUCAST_Disk_Test_final.pdf. Last accessed 26.02.2019.

Evans, J.R. & T.C. Vogelmann 2003. Profiles of 14C fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell and Environment 26(4): 547-560. CrossRef

Fershalova, T., E. Baikova & A. Ushakova 2018. Application of phytoncidal plants for improvement of ecological parameters of the air of library interiors. Prospects of Development and Challenges of Modern Botany, BIO Web of Conferences 11, 00014. CrossRef

Ganter, P. & G. Jollés 1969. Histochimie normale et pathologique, vol. 1. Gauthier-Villars, Paris. 923 pp. Glas, J.J, B.C. Schimmel, J.M. Alba, R. Escobar-Bravo, R.C. Schuurink & M.R. Kant 2012. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences 13(12): 17077−17103. CrossRef

Greenaway, W., J. May, T. Scaysbrook & F.R. Whatley 1992a. Compositions of bud and leaf exudates of some Populus species compared. Zeitschrift für Naturforschung 47c, 329-334. CrossRef

Greenaway, W., J. May, T. Scaysbrook & F.R. Whatley 1992b. Analysis of phenolics of bud exudates of Populus simonii and Populus yunnanensis by GC-MS. Zeitschrift für Naturforschung 47c, 477−480. CrossRef

Gu, C., C.I. Peng & N.J. Turland 2007. Begoniaceae. In: Flora of China, vol. 13 (Clusiaceae - Araliaceae). (Z.Y. Wu, P.H. Raven & D.Y. Hong, eds), pp. 153-207, Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.

Heinrich, G., H.W. Pfeifhofer, E. Stabentheiner & T. Sawidis 2002. Glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae): morphology, histochemistry and composition of essential oil. Annals of Botany 89(4):459−69. CrossRef

Hughes, N.M., T.C. Vogelmann & W.K. Smith 2008. Optical effects of abaxial anthocyanin on absorption of red wavelengths by understorey species: revisiting the back-scatter hypothesis. Journal of Experimental Botany 59(12):3435−3442. CrossRef

Hughes, N.M., K.L. Carpenter, T.S. Keidel, C.N. Miller, M.N. Waters & W.K. Smith 2014. Photosynthetic costs and benefits of abaxial versus adaxial anthocyanins in Colocasia esculenta 'Mojito'. Planta 240(5):971−981. CrossRef

Hwang, G.B., K.J. Heo, J.H. Yun, J.E. Lee, H.J. Lee, C.W. Nho, G.N. Bae & J.H. Jung 2015. Antimicrobial air filters using natural Euscaphis japonica nanoparticles. PLoS ONE 10(5): e0126481. CrossRef

ICH Harmonised Tripartite Guideline. Validation of analytical procedures: text and methodology Q2(R1). Geneva: 2005. Available from: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Last accessed 26.02.2019.

Jansen, M.A.K., R.A. van der Noort, A. Tan, E. Prinsen, M.L. Lagrimini & R.N.F. Thorneley 2001. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiology 126:1012-1023. CrossRef

Joshi, K.R., H.P. Devkota, T. Nakamura, T. Watanabe & S. Yahara 2015. Chemical constituents and their DPPH radical scavenging activity of Nepalese crude drug Begonia picta. Records of Natural Products 9(3):446-450.

Kang, J.H., F. Shi, A.D. Jones, M.D. Marks & G.A. Howe 2010. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany 61(4):1053-1064. CrossRef

Kant, M.R., W. Jonckheere, B. Knegt, F. Lemos, J. Liu, B.C. Schimmel, C.A. Villarroel, L.M. Ataide, W. Dermauw, J.J. Glas, M. Egas, A. Janssen, T. Van Leeuwen, R.C. Schuurink, M.W. Sabelis & J.M. Alba 2015. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany 115(7): 1015−1051. CrossRef

Karpova, E.A. & T.D. Fershalova 2016. Dynamics of leaf pigments content of Begonia grandis Dryander subsp. grandis introduced in West Siberia (Novosibirsk). Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya 1(33):140-158 (in Russian with English summary). [Карпова Е.А., Т.Д. Фершалова. 2016. Динамика содержания пигментов в листьях Begonia grandis Dryander subsp. grandis при интродукции в Западной Сибири (г. Новосибирск) // Вестник Томского государственного университета. Биология. № 1 (33). С. 140-158]. CrossRef

Karpova, E.A., T.D. Fershalova & A.A. Petruk 2016. Flavonoids in adaptation of Begonia grandis Dryander subsp. grandis introduced in West Siberia (Novosibirsk). Journal of Stress Physiology & Biochemistry 12(3):44-56.

Karpova E., T. Fershalova & Yu. Yakimova 2018. Flavonoid content and antimicrobial properties of leaves of some Begonia species. Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya Estestvennye i tekhnicheskie nauki 1:5-10. [Карпова Е.А., Фершалова Т.Д., Якимова Ю.Л. 2018. Содержание флавоноидов и антимикробные свойства листьев некоторых видов рода Begonia // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. № 1. C. 5-10.

Lahtinen, M., K. Lempa, J.-P. Salminen & K. Pihlaja 2006. HPLC analysis of leaf surface flavonoids for the preliminary classification of birch species. Phytochemical Analysis 17:197-203. CrossRef

Li, X., D. Tian, C. Li, K. Liu, X. Li & M. Nakata 2014. The history, culture, utilization, germplasm diversity and research advances of Begonia grandis Dry. Botanical Research 3:117−139. CrossRef

Li, Z.J., M, Liu, G. Dawuti, Q. Dou, Y. Ma, H.G. Liu & S. Aibai 2017. Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy Research 31(7):1039−1045. CrossRef

McNally, D.J., K.V. Wurms, C. Labbé & R. Bélanger 2003. Synthesis of C-glycosyl flavonoid phytoalexins as a sitespecific response to fungal penetration in cucumber. Physiological and Molecular Plant Pathology 63:293-303. CrossRef

Meyberg, M., S. Krohn, B. Brümmer & U. Kristen 1991. Ultrastructure and secretion of glandular trichomes of tobacco leaves. Flora 185:357−363. CrossRef

Muravnik, L.E. 2008. The trichomes of pericarp in Juglans (Juglandaceae): scanning microscopy, fluorescent microscopy amd histochemistry. Tsitologiya 50(7):636−642 (in Russian with English summary). [Муравник Л.Е. 2008. Трихомы перикарпия у видов Juglans (Juglandaceae): сканирующая микроскопия, флуоресцентная микроскопия и гистохимия // Цитология. Т. 50, № 7. С. 636−642].

Muravnik, L.E. & A.L. Shavarda 2011. Pericarp peltate trichomes in Pterocarya rhoifolia: histochemistry, ultrastructure, and chemical composition. International Journal of Plant Sciences 172(2):159-172. CrossRef

Muravnik, L.E. & A.L. Shavarda 2012. Leaf glandular trichomes in Empetrum nigrum: morphology, histochemistry, ultrastructure and secondary metabolites. Nordic Journal of Botany 30:470-481. CrossRef

Muravnik, L.E., O.V. Kostina & A.L. Shavarda 2014. Development, structure and secretion compounds of stipule colleters in Pentas lanceolata (Rubiaceae). South African Journal of Botany 93:27-36. CrossRef

Muravnik, L.E., O.V. Kostina & A.L. Shavarda 2016. Glandular trichomes of Tussilago farfara (Senecioneae, Asteraceae). Planta 244:737-752. CrossRef

Nicholson, R.L. & R. Hammerschmidt 1992. Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology 30:369-389. CrossRef

Nikolova, M., R. Gevrenova & S. Ivancheva 2003. External flavonoid aglycones from Veronica chamaedrys L. (Scrophulariaceae). Acta Pharmaceutica 53:145-149. Nikolova, M. & A. Asenov 2006. Surface flavonoid aglycones in newly studied plant species. Natural Product Research: Formerly Natural Product Letters 20(1):103−106. CrossRef

Oteiza, P.I., A.G. Erlejman, S.V. Verstraeten, C.L. Keen & C.G. Fraga 2005. Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clinical & Developmental Immunology 12(1):19-25. CrossRef

Özçelik, B, I. Orhan & G. Toker 2006. Antiviral and antimicrobial assessment of some selected flavonoids. Zeitschrift für Naturforschung 61c:632−638. CrossRef

Petrussa, E., E. Braidot, M. Zancani, C. Peresson, A. Bertolini, S. Patui & A. Vianello 2013. Plant flavonoids - biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences 14(7):14950−14973. CrossRef

Pinheiro, C.G., J.M.S. Oliveira & B.M. Heinzmann 2018. Structural characterization of vegetative organs of the endangered Brazilian native species Hesperozygis ringens (Benth.) Epling. Anais da Academia Brasileira de Ciências 90(3): 2887−2901. CrossRef

Pireyre, N. 1961. Contributions to the morphological, histological and physiological study of cystoliths. Review of Cytology and Plant Biology 23:93-320. Shui, Y.M., Q.R. Li & S.H. Huang 1999. Observation of leaf epidermis and its hair of begonia from Yunnan. Acta Botanica Yunnanica 21(3):309−316. Shui, Y.M., C.I Peng & C.Y. Wu 2002. Synopsis of the Chinese species of Begonia (Begoniaceae), with a reappraisal of sectional delimitation. Botanical Bulletin of Academia Sinica 43: 313−327. Soares, A.S., S.P. Driscoll, E. Olmos, J. Harbinson, M.C. Arrabaça & C.H. Foyer 2008. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum. New Phytologist 177(1):186-98. CrossRef

Tattini, M., E. Gravano, P. Pinelli, N. Mulinacci & A. Romani 2000. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation New Phytologyst 148:69−77. CrossRef

Tattini, M., P. Matteini, E. Saracini, M.L. Traversi, C. Giordano & G. Agati 2007. Morphology and biochemistry of on-glandular trichomes in Cistus salvifolius leaves growing in extreme habitats of the Mediterranean basin. Plant Biology 9:411-419. CrossRef

Teodoro, G.R., K. Ellepola, C.J. Seneviratne & C.Y. Koga-Ito 2015. Potential use of phenolic acids as anti-Candida agents: A review. Frontiers in Microbiology 6:1420. CrossRef

Tissier, A. 2012. Glandular trichomes: What comes after expressed sequence tags? The Plant Journal 70:51-68. CrossRef

Valant-Vetschera, K.M., E. Wollenweber, R. Faure & E. Gaydou 2003a. New exudate flavonoids of species from the Chrysanthemum complex (Asteraceae-Anthemideae). Biochemical Systematics and Ecology 31:545-548. CrossRef

Valant-Vetschera, K.M., J.N. Roitman & E. Wollenweber 2003b. Chemodiversity of exudate flavonoids in some members of the Lamiaceae. Biochemical Systematics and Ecology 31:1279-1289. CrossRef

Valant-Vetschera, K.M. & B. Brem 2006. Chemodiversity of exudate flavonoids, as highlighted by selected publications of Eckhard Wollenweber. Natural Product Communications 1(11):921−926. CrossRef

Valant-Vetschera, K.M. & E. Wollenweber 2007. Chemodiversity of exudates flavonoids in seven tribes of Cichorioideae and Asteroideae (Asteraceae). Zeitschrift für Naturforschung 62c:155−163. CrossRef

Valkama, E., J.P. Salminen, J. Koricheva & K. Pihlaja 2003. Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish birch species. Annals of Botany 91(6):643-655. CrossRef

Valkama, E., J.-P. Salminen, J. Koricheva & K. Pihlaja 2004. Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Annals of Botany 94(2):233-242. CrossRef

Veras, H.N.H., I.J.M. dos Santos, A.C.B. dos Santos, C.N. Fernandes, E.F.F. Matias, G. de O. Leite, H.H.F. de Souza, J.G.M. da Costa & H. D.M. Coutinho 2011. Comparative evaluation of antibiotic and antibiotic modifying activity of quercetin and isoquercetin in vitro. Current Topics in Nutraceutical Research 9(1):25−30.

Villa-Ruano, N., Y. Pacheco-Hernández, R. Cruz-Durán, E. Lozoya-Gloria & M.G. Betancourt-Jiménez 2017. Seasonal variation in phytochemicals and nutraceutical potential of Begonia nelumbiifolia consumed in Puebla, México. Journal of Food Science and Technology 54(6):1484-1490. CrossRef

Voronkova, M.S., G.I. Vysochina, T.A. Kukushkina, O.A. Mochalova & E.A. Andriyanova 2016. A comparative research of secondary metabolites of the closely related species Bistorta elliptica and B. plumosa of Magadan region. Voprosy biologicheskoi, meditsinskoi i farmatsevticheskoi chimii 10: 15−22 (in Russian with English summary). [Воронкова М.С., Высочина Г. И., Кукушкина Т.А., Мочалова О.А., Андриянова Е.А. 2016. Сравнительное исследование вторичных метаболитов близкородственных видов Bistorta elliptica и B. plumosa, произрастающих в Магаданской области // Вопросы биологической, медицинской и фармацевтической химии. № 10. С. 15−22].

Wagner, G. 1991. Secreting glandular trichomes: more than just hairs. Plant physiology 96:675−679. CrossRef

Werker, E., U. Ravid & E. Putievsky 1985. Structure of glandular hairs and identification of the main components of their secreted material in some species of the Labiatae. Israel Journal of Botany 34:31−45. Wollenweber, E., K. Mann, M. Dörr, H. Fritz, J.N. Roitman & G. Yatskievych 1995. Exudate flavonoids in three Ambrosia species. Natural Product Letters 7:109−116. CrossRef

Wollenweber, E., R. Wehde, M. Dörr & J.F. Stevens 2002. On the occurrence of exudate flavonoids in the Borage Family (Boraginaceae). Zeitschrift für Naturforschung 57c:445−448. CrossRef

Wollenweber, E., M. Christ, R.H. Dunstan, J.N. Roitman & J.F. Stevens 2005a. Exudate flavonoids in some Gnaphalieae and Inuleae (Asteraceae). Zeitschrift für Naturforschung 60c: 671−678. CrossRef

Wollenweber, E., M. Dörsam, M. Dörr, J.N. Roitman & K.M. Valant-Vetschera 2005b. Chemodiversity of surface flavonoids in Solanaceae. Zeitschrift für Naturforschung 60c:661−670. CrossRef







© 2016-2019 Botanica Pacifica