Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation Preprint
Article first published online: 13 JUL 2018 | DOI: 10.17581/bp.2018.07202

Diversity of fungal communities associated with mixotrophic pyroloids (Pyrola rotundifolia, P. media and Orthilia secunda) in their natural habitats

Ekaterina F. Malysheva1*, Vera F. Malysheva1 , Elena Yu. Voronina2 & Alexander E. Kovalenko1

1Komarov Botanical Institute of the Russian Academy of Sciences, Saint-Petersburg, Russia

2Lomonosov Moscow State University, Moscow, Russia

As it was shown, mixotrophic plants (MxP) strongly depend on their mycorrhizal fungi for carbon, at least at the early stages of life cycle, and have rather high specificity for mycobionts. However, the diversity of fungi associated with MxP and their role in plant’s life are still poorly known, especially under natural conditions. In the present study, the diversity of mycobionts of the three mixotrophic pyroloid species (Pyrola rotundifolia, P. media and Orthilia secunda) was investigated by sequencing nrITS from roots and rhizomes. At the same time, we studied ectomycorrhizal fungal communities of neighboring trees. The mycobiont diversity slightly differed berween the three species, but they also shared similar fungal taxa. The species of basidiomycete genera Tomentella, Piloderma, Russula and Mycena were dominant fungal partners of the studied pyroloids. The plants were also colonized by other ectomycorrhizal and saprotrophic basidiomycetes and ascomycetes. The research results showed MxP link to tree species by shared mycobionts and partial mycoheterotrophy by involvement into mycelial network. Thirty nine fungal taxa (at species and genera level) inhabiting pyroloid root system as mycobionts and root endophytes were detected. Their role for plant performance requires further investigation.

Малышева Е.Ф., Малышева В.Ф., Воронина Е.Ю., Коваленко А.Е. Разнообразие сообществ грибов, связанных с миксотрофными грушанковыми (Pyrola rotundifolia, P. media и Orthilia secunda) в их естественных местообитаниях. Миксотрофные растения (MxP) сильно зависят в углеродном питании от микоризных грибов, по крайней мере, на ранних стадиях развития, и обладают высокой специфичностью к микобионтам. Однако еще довольно мало известно о разнообразии грибов, связанных с MxP, и их роли в жизни растений, особенно в естественных экосистемах. В настоящей работе было исследовано разнообразие микобионтов трех видов грушанковых с миксотрофным типом питания (Pyrola rotundifolia, P. media и Orthilia secunda) путем выделения ДНК и последующего секвенирования nrITS из корней и корневищ. Одновременно изучался состав грибов, формирующих эктомикоризу с соседними деревьями. Обнаруженные сообщества микобионтов немного отличались у трех видов грушанковых, хотя были выявлены общие симбионты. Доминирующими партнерами в арбутоидной микоризе изученных видов растений явились базидиомицеты из родов Tomentella, Piloderma, Russula и Mycena. Растения были также колонизированы другими эктомикоризными и сапротрофными базидиомицетами и аскомицетами. Результаты исследования показали связь MxP с древесными растениями в природе благодаря наличию общих микобионтов, с помощью которых растения вовлекаются в единую мицелиальную сеть. Всего было выявлено 39 грибных таксонов (видового и родового рангов), обитающих в корневой системе грушанковых в качестве микобионтов и корневых эндофитов. Их роль в жизни растений требует дальнейшего изучения.

Keywords: Pyroleae, arbutoid mycorrhiza, mixotrophy, nrITS, operational taxonomic units, symbionts, endophytes, арбутоидная микориза, миксотрофия, операционные таксономические единицы, симбионты, эндофиты

PDF


References

Beenken, L. & K. Horn 2008. Erstnachweis von Geoglossum arenarium am Großen Arber im Bayerischen Wald. Bavarian Forest. Zeitschrift für Mykologie 74(1):119–126.

Bidartondo, M.I., B. Burghardt, G. Gebauer, T.D. Bruns & D.J. Read 2004. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings of the Royal Society Biological Sciences B: Biological Sciences 271:1799–1806. CrossRef

Daghino, S., E. Martino & S. Perotto 2016. Model system to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Mycorrhiza 26: 263–274. CrossRef

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5):1792–1797. CrossRef

Eriksson, O. & K. Kainulainen 2011. The evolutionary ecology of dust seeds. Perspectives in Plant Ecology Evolution and Systematics 13: 73–87. CrossRef

Erland, S. 1995. Abundance of Tylospora fibrillosa ectomycorrhizas in a South Swedish spruce forest measured by RFLP analysis of the PCR-amplified rDNA ITS region. Mycological Research 99(12):1425–1428. CrossRef

Freudenstein, J.V. 1999. Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. Systematic Botany 24:398–408. CrossRef

Gardes, M. & T.D. Bruns 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118. CrossRef

Gorfer, M., S. Klaubauf, D. Bandian & J. Strauss 2007. Cadophora finlandia and Phialocephala fortinii: Agrobacterium-mediated transformation and functional GFP expression. Mycological Research 111: 850–855. CrossRef

Hashimoto, Y., S. Fukukawa, A. Kunishi, H. Suga, F. Richard, M. Sauve & M.-A. Selosse 2012. Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytologist 195:620–630. CrossRef

Hynson, N.A. & T.D. Bruns 2009. Evidence of a mycoheterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proceedings of the Royal Society Biological Sciences B: Biological Sciences 276:4053–4059.

Hynson, N.A., K. Preiss, G. Gebauer & T.D. Bruns 2009. Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae). New Phytologist 182:719–726. CrossRef

Hynson, N.A., M. Weiss, K. Preiss, G. Gebauer & K.K. Treseder 2013. Fungal host specificity is not a bottleneck for the germination of Pyroleae species (Ericaceae) in a Bavarian forest. Molecular Ecology 22(5):1473–1481. CrossRef

Johansson, V.A., A. Mikusinska, A. Ekblad & O. Eriksson 2015. Partial mycoheterotrophy in Pyroleae: nitrogen and carbon stable isotope signatures during development from seedling to adult. Oecologia 177:203–211. CrossRef

Kosola, K.R., B.A.A. Workmaster & P.A. Spada 2007. Inoculation of cranberry (Vaccinium macrocarpon) with the ericoid mycorrhizal fungus Rhizoscyphus ericae increases nitrate influx. New Phytologist 176:184–196. CrossRef

Kõljalg, U., K.-H. Larsson, K. Abarenkov, R.H. Nilsson, I.J. Alexander, U. Eberhardt et al. 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166:1063–1068. CrossRef

Kõljalg, U., R.H. Nilsson, K. Abarenkov, L. Tedersoo, A.F.S. Taylor & 37 others 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22:5271–5277. CrossRef

Kron, K.A., W.S. Judd, P.F. Stevens, D.M. Crayn, A.A. Anderberg, P.A. Gadek, C.J. Quinn & J.L. Luteyn 2002. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Botanical Review 68:335–423. CrossRef

Kučera, V., P. Lizoň & I. Kautmanová 2008. Geoglossaceous fungi in Slovakia: rare and new taxa for the territory. Biologia 63(4): 482–486. CrossRef

Leake, J.R. 1994 Tansley review No. 69. The biology of myco-heterotrophic ('saprophytic') plants. New Phytologist 127:171–216. CrossRef

Liu, Z.W., J. Zhou, E.D. Liu & H. Peng 2010. A molecular phylogeny and a new classification of Pyrola (Pyroleae, Ericaceae). Taxon 59:1690–1700.

Malysheva, E.F., V.F. Malysheva, A.E. Kovalenko, E.A. Pimenova, M.N. Gromyko, S.N. Bondarchuk & E.Yu. Voronina 2016. Below-ground ectomycorrhizal community structure in the postfire successional Pinus koraiensis forests in the Central Sikhote-Alin (the Russian Far East). Botanica Pacifica 5(1):19–31. CrossRef

Massicotte, H.B., L.H. Melville, R. Molina & R.L. Peterson 1993. Structure and histochemistry of mycorrhizae synthesized between Arbutus menziesii (Ericaceae) and two basidiomycetes, Pisolithus tinctorius (Pisolithaceae) and Piloderma bicolor (Corticiaceae). Mycorrhiza 3(1):1–11. CrossRef

Massicotte, H.B., L.H. Melville, L.E. Tackaberry & R.L. Peterson 2008. A comparative study of mycorrhizas in several genera of Pyroleae (Ericaceae) from western Canada. Botany 86:610–622. CrossRef

Matsuda, Y., S. Shimizu, M. Mori, S.I. Ito & M.A. Selosse 2012. Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. American Journal of Botany 99:1177–1188. CrossRef

Matsuda, Y., T. Uesugi, T.-W. Hsu, C.-F. Chen 2017. Mycorrhizal fungi associated with Taiwanese Pyrola morrisonensis (Ericaceae) in a naturally regenerated forest. Taiwania 62(4):399–406.

Merckx, V. 2013. Mycoheterotrophy: the biology of plants living on fungi. Springer-Verlag, Berlin, 356 pp. CrossRef

Ogura-Tsujita, Y., G. Gebauer, T. Hashimoto, H. Umata & T. Yukawa 2009. Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proceedings of the Royal Society Biological Sciences B: Biological Sciences 276:761–767. CrossRef

Queloz, V., C.R. Grünig, T.N. Sieber & O. Holdenrieder 2005. Monitoring the spatial and temporal dynamics of a community of the tree-rot endophyte Phialocephala fortinii s.l. New Phytologist 168:651–660. CrossRef

Peterson, R.L., C. Wagg & M. Pautler 2008. Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86:445–456. CrossRef

Read, D.J. 1996. The structure and function of the ericoid mycorrhizal root. Annals of Botany 77:365–374. CrossRef

Rice, A.V. & R.S. Currah 2006. Oidiodendron maius: saprobe in sphagnum peat, mutualist in ericaceous roots? In: Microbial Roots Endophytes (B.J.E. Shulz, C.J.C. Boyle & T.N. Sieber, eds.), pp. 227–246, Springer, NY. CrossRef

Rinaldi, A.C., O. Comandini & T.W. Kuyper 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diversity 33:1–45.

Robertson, D.C. & J.A. Robertson 1985. Ultrastructural aspects of Pyrola mycorrhizae. Canadian Journal of Botany 63:1089–1098. CrossRef

Rosen, C.J., D.L. Allan & J.J. Luby 1990. Nitrogen form and solution pH influence growth and nutrition of two Vaccinium clones. Journal of the American Society for Horticultural Science 115:83–89.

Selosse, M.-A. & M. Roy 2009. Green plants that feed on fungi: facts and questions about mixotrophy. Trends in Plant Sciences 14:64–70. CrossRef

Smith, S.E. & D.J. Read 2008. Mycorrhizal Symbiosis, 3rd edition, Academic Press, NY, 787 pp.

Smith, M.E., A. Gryganskyi, G. Bonito, E. Nouhra, B. Moreno-Arroyo & G. Benny 2013. Phylogenetic analysis of the genus Modicella reveals an independent evolutionary origin of sporocarp-forming fungi in the Mortierellales. Fungal Genetics and Biology 61:61–68. CrossRef

Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725–2729. CrossRef

Tedersoo, L., P. Pellet, U. Kõljalg & M.-A. Selosse 2007. Parallel evolutionary paths to mycohetereotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217. CrossRef

Tedersoo, L., T.W. May & M.E. Smith 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. CrossRef

Toftegaard, T., G.R. Iason, I.J. Alexander, S. Rosendahl & A.F.S. Taylor 2010. The threatened plant intermediate wintergreen (Pyrola media) associates with a wide range of biotrophic fungi in native Scottish pine woods. Biodiversity and Conservation 19:3963–3971. CrossRef

Vincenot, L., L. Tedersoo, F. Richard, H. Horcine, U. Kõljalg & M.A. Selosse 2008. Fungal associates of Pyrola rotundifolia, a mixotrophic Ericaceae, from two Estonian boreal forests. Mycorrhiza 19:15–25. CrossRef

Wei, X., J. Chen & D. Pan 2016. A new Oidiodendron maius strain isolated from Rhododendron fortunei and its effects on nitrogen uptake and plant growth. Frontiers in Microbiology 7:1327. CrossRef

White, T.J., T.D. Bruns, S. Lee & J. Taylor 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. A guide to methods and applications (M.A. Innis, D.H. Gelfand, J.J. Sninsky & T.J. White, eds), pp. 315–322, New York. CrossRef

Yin, L., C. Zhang & B. Yang 2010. Characteristics of nitrogen absorbed by ericoid mycorrhizal fungi and impact on growth of Rhododendron fortunei. Scientia Agricultura Sinica 43:868–872.

Zimmer, K., N.A. Hynson, G. Gebauer, E.B. Allen, M.F. Allen & D.J. Read 2007. Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytologist 175:166–175. CrossRef





© 2016-2018 Botanica Pacifica