Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation Preprint
Article first published online: 26 APR 2018 | DOI: 10.17581/bp.2018.07106

A mixotrophy is in question: new data on fungal community associated with photosynthetic terrestrial orchid Goodyera repens

Elena Yu. Voronina1*, Ekaterina F. Malysheva2, Vera F. Malysheva2 , Georgy V. Dmitriev1, Alexei V. Tiunov3 & Alexander E. Kovalenko2

1Lomonosov Moscow State University, Moscow, Russia

2V.L. Komarov Botanical Institute RAS, Saint-Petersburg, Russia

3A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia

The boreal green orchid Goodyera repens is an object of debates on its mycorrhizal symbionts’ diversity and nutritional strategy. The study was focused on biodiversity of G. repens mycobionts and root fungal endophytes diversity revealing by direct molecular identification from roots and rhizomes and estimation of its possible partial heterotrophy by 13C/15N stable isotope analysis. Thirteen fungal taxa, predominantly basidiomycetes, both saprotrophs and ectomycorrhizal were detected, and the shared with coniferous tree mycobiont (Russula vinosa) was revealed both in orchid and neighbouring trees roots. The presence of wood and litter decay fungi can indicate the first steps G. repens on mycoheterotrophic pathway. 13C depletion along with 15N enrichment characterizes G. repens as initially mycoheterotrophic- autotrophic species. The similarity of δ15N values with litter saprotroph fungi both with sharp increase in 13C/15N in underground parts need further investigation with particular attention to clonal growth and intraclonal transfer potential and mycobiont diversity.

Воронина Е.Ю., Малышева Е.Ф., Малышева В.Ф., Дмитриев Г.В., Тиунов А.В., Коваленко А.Е. Миксотрофность под вопросом: новые данные о грибном сообществе, связанном с фотосинтезирующей наземной орхидеей Goodyera repens. Объектом исследования является Goodyera repens, бореальный хлорофилл-содержащий вид орхидных, чьё разнообразие микоризных симбионтов и трофический статус дискуссионны. Целью исследования было выявление биоразнообразия грибов-микобионтов и корневых эндофитов G. repens посредством прямого молекулярного анализа корней и корневищ, а также установление возможной частичной гетеротрофии растения с помощью анализа стабильных изотопов (13C/15N). Выявлено 13 таксонов грибов, в основном, базидиомицетов, относящихся как к сапротрофам, так и к эктомикоризообразователям, и обнаружен общий с хвойными древесными породами симбионт Russula vinosa. Присутствие в корневой системе G. repens подстилочных и ксилосапротрофов может указывать на первые шаги вида в эволюции микогетеротрофии. Обеднение по 13C наряду с обогащением по 15N характеризует G. repens как изначально микогетеротрофный, впоследствии автотрофный вид, но сходство значений δ15N с грибами – подстилочными сапротрофами, а также резкое повышение содержания 13C/15N в подземной части растений тре- бует дальнейшего изучения. Особого внимания заслуживают клональный рост G. repens, подразумевающий возможность транспорта питания внутри колонии, и разнообразие микобионтов.

Keywords: Orchidaceae, mycorrhizal symbionts, root endophytes, fungal diversity, nrITS, stable isotope analysis, микоризные симбионты, эндофиты, разнообразие грибов, анализ стабильных изотопов

PDF


References

Agerer, R., J. Christan, C. Mayr & E. Hobbie 2012. Isotopic signatures and trophic status of Ramaria. Mycological Progress 11:47–59. CrossRef

Arditti, J. & A.K.A. Ghani 2000. Tansley review, 110 – Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145:367–421. CrossRef

Aronsen, A. & T. Læssøe 2016. The genus Mycena s.l. In: Fungi of Northern Europe, vol. 5. Narayana Press, Gylling, 373 pp.

Bayman, P. & J.T. Otero 2006. Microbial endophytes of orchid roots. In: Microbial root endophytes, (B. Schulz, C. Boyle & T. Sieber, eds), pp. 153–177, Springer, NY. CrossRef

Bougoure, J.J., M.C. Brundrett & P.F. Grierson 2010. Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri. New Phytologist 186:947–956. CrossRef

Cameron, D.D., J.R. Leake & D.J. Read 2006. Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytologist 71:405–416. CrossRef

Cameron, D.D., I. Johnson, J.R. Leake & D.J. Read 2007. Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Annals of Botany 99:831–834. CrossRef

Cameron, D.D., I. Johnson, D.J. Read & J.R. Leake 2008. Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytologist 180:176–184. CrossRef

Chen, Y., H. Wang & S-X. Guo 2012. Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22: 297–307. CrossRef

Currah, R.S. & C. Zelmer 1992. A key and notes for the genera of fungi mycorrhizal with orchids and a new species in the genus Epulorhiza. Reports of the Tottori Mycological Institute 30:43–59.

Damm, U., R. Baroncelli, L. Cai, Y. Kubo, R. O`Connell, B. Weir, K. Yoshino & P.F. Cannon 2010. Colletotrichum: species, ecology and interactions. IMA Fungus 1(2):161–165. CrossRef

Dearnaley, J.D.W., F. Martos & M-A. Selosse 2012. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: The Mycota, volume IX – Fungal associations, 2nd edition, (K. Esser, ed.), pp. 207–230, Springer-Verlag, Berlin. CrossRef

Fan, L., S.X. Guo, W.Q. Cao, P.G. Xiao & J.T. Xu 1996. Isolation, culture, identification and biological activity of Mycena orchidicola sp. nov. in Cymbidium sinense (Orchidaceae). Acta Mycologica Sinica 15:251–255.

Gardes, M, & T.D. Bruns 1993. ITS primers with enhanced specificity for basidiomycetes – applications to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. CrossRef

Gebauer, G., K. Preiss & A.C. Gebauer 2016. Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytologist 211:11–15. CrossRef

Girlanda, M., M.-A. Selosse, D. Cafasso, F. Brilli, S. Delfine, R. Fabbian, S. Ghignone et al. 2006. Inefficient photosynthesis in the Mediterranean orchid Limodorum aborvitum is mirrored by specific association to ectomycorrhizal Russulaceae. Molecular Ecology 15:491–504. CrossRef

Guo, S-X., L. Fan, W.-Q. Cao, J.-T. Xu & P.-G. Xiao 1997. Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China. Mycologia 89(6):952–954. CrossRef

Hajji, L., W. Hlaoua, H. Regaieg & N. Horrigue-Raouani 2017. Biocontrol potential of Verticillium leptobactrum and Purpureocillium lilacinum against Meloidogyne javanica and Globodera pallida on potato (Solanum tuberosum). American Journal of Potato Research 94(2):178–183. CrossRef

Harley, J.L. & E.L. Harley 1987. A check-list of mycorrhiza in the British flora. New Phytologist 105 (Suppl.):1–102. CrossRef

Hynson, N., K. Preiss & G. Gebauer 2009. Is it better to give than to receive? A stable isotope perspective on orchid–fungal carbon transport in the green orchid species Goodyera repens and Goodyera oblongifolia. New Phytologist 182:8–11. CrossRef

Hynson, N.A., T.P. Madsen, M.A. Selosse, I.K.U. Adam, Y. Ogura-Tsujita, M. Roy & G. Gebauer 2013. The physiological ecology of mycoheterotrophy. In: Mycoheterotrophy: the biology of plants living on fungi, (V.S.F.T. Merckx, ed.), pp. 297–342, Springer, Berlin. CrossRef

Julou, T., B. Burghardt, G. Gebauer, D. Berveiller, C. Damesin & M.-A. Selosse 2005. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist 166:639–653. CrossRef

Katoh, K. & H. Toh 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9:286e298.

Kohout, P., T. Těšitelová, M. Roy, M. Vohník & J. Jersákova 2013. Mycorrhizal and endophytic fungal communities associated with roots of Pseudorchis albida (Orchidaceae). Fungal Ecology 6:50–64. CrossRef

Kõljalg, U., K.H. Larsson, K. Abarenkov, R.H. Nilsson, I.J. Alexander, U. Eberhardt, S. Erland et al. 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166:1063–1068. CrossRef

Kõljalg, U., R.H. Nilsson, K. Abarenkov, L. Tedersoo, A.F.S. Taylor, M. Bahram, S.T. Bates et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22:5271–5277. CrossRef

Leake, J.R. 1994. The biology of myco-heterotrophic (saprophytic) plants. New Phytologist 127:171–216. CrossRef

Liebel, H.T., M.I. Bidartondo & G. Gebauer 2015. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance? Annals of Botany 115:251–261. CrossRef

Lievens, B., S. van Kerckhove, A. Justé, B.P. Cammue, O. Honnay & H. Jacquemyn 2010. From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. Journal of Microbiological Methods 80:76–85. CrossRef

Malysheva, V.F., E.F. Malysheva, E.Yu. Voronina, A.G. Fedosova, N.M. Bibikov, D.S. Kiseleva, A.V. Tiunov & A.E. Kovalenko 2017. Mycorrhiza of pyroloids (Pyrola rotundifolia, P. media and Orthilia secunda): species composition of symbionts and trophic status of plants. Mikologiya I Fitopatologiya 51(6):350–364 (in Russian with English summary). [Малышева В.Ф., Малышева Е.Ф., Воронина Е.Ю., Федосова А.Г., Бибиков Н.М., Киселева Д.С., Тиунов А.В., Коваленко А.Е. 2017. Микориза грушанковых (Pyrola rotundifolia, P. media и Orthilia secunda): состав грибных симбионтов и трофический статус растений // Микология и фитопатология. Т. 51, № 6. С. 350–364].

McCormick, M.K., D.F. Whigham, D. Sloan, K. O'Malley & B. Hodkinson 2006. Orchid-fungus fidelity: a marriage meant to last? Ecology 87:903–911. CrossRef

Mosquera-Espinosa, A.T., P. Bayman, G.A. Prado, A. Gómez-Carabalí & J.T. Otero 2013. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia 105:141–150. CrossRef

Ogura-Tsujita, Y. & T. Yukawa 2008. High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). American Journal of Botany 95: 93–97. CrossRef

Ogura-Tsujita, Y., G. Gebauer, H. Xu, Y. Fukasawa, H. Umata, K. Tetsuka, M. Kubota et al. 2018. The giant mycoheterotrophic orchid Erythrorchis altissima is associated mainly with a divergent set of wood-decaying fungi. Molecular Ecology 27(5):1324–1337. CrossRef

Ownley, B.H., K.D. Gwinn & F.E. Vega 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–128. CrossRef

Peterson, R.L., Y. Uetake & C. Zelmer 1998. Fungal symbioses with orchid protocorms. Symbiosis 25:29–55.

Peterson, R.L., H.G. Massicotte & L.H. Melville 2004. Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ottawa, 173 pp.

Rasmussen, H.N. 1995. Terrestrial orchids: From seed to mycotrophic plant. Cambridge University Press, Cambridge, 444 pp. CrossRef

Rasmussen, H.N. 2002. Recent developments in the study of orchid mycorrhiza. Plant & Soil 244:149–163. CrossRef

Rasmussen, H.N. & D.F. Whigham 1993. Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. American Journal of Botany 80: 1374–1378. CrossRef

Rinaldi, A.C., O. Comandini & T.W. Kuyper 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Diversity 33:1–45.

Roy, M., C. Gonneau, A. Rocheteau, D. Berveiller, J.-C. Thomas, C. Damesin & M-A. Selosse 2013. Why do mixotrophic plants stay green? A comparison between green and achlorophyllous orchid individuals in situ. Ecological Monographs 83(1):95–117. CrossRef

Schiebold, J.M.I., M.I. Bidartondo, P. Karasch, B. Gravendeel & G. Gebauer 2017. You are what you get from your fungi: nitrogen stable isotope patterns in Epipactis species. Annals of Botany 119:1085–1095. CrossRef

Schweiger, J.M.I., M.I. Bidartondo & G. Gebauer 2018. Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Functional Ecology 32(4): 870–881. CrossRef

Selosse, M-A. & M. Roy 2009. Green plants that feed on fungi: facts and questions about mixotrophy. Trends in Plant Sciences 14:64–70. CrossRef

Selosse, M-A., F. Martos, B.A. Perry, M. Padamsee, M. Roy & T. Pailler 2010. Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchids. Finding treasures among the "molecular scraps"? Plant Signaling & Behavior 5(4):349–353. CrossRef

Selosse, M-A., M.F. Bocayuva, M.C.M. Kasuya & P.E. Courty 2017. Mixotrophy in mycorrhizal plants: extracting carbon from mycorrhizal networks. In: Molecular mycorrhizal symbiosis, (F. Martin, ed.), pp. 451–471, Wiley Blackwell, Hoboken.

Smith, S.E. & D.J. Read 2008. Mycorrhizal Symbiosis, 3rd edition, Academic Press, NY, 787 pp.

Smith, M.E., A. Gryganskyi, G. Bonito, E. Nouhra, B. Moreno-Arroyo & G. Benny 2013. Phylogenetic analysis of the genus Modicella reveals an independent evolutionary origin of sporocarp-forming fungi in the Mortierellales. Fungal Genetics and Biology 61:61–68. CrossRef

Shefferson, R.P., M. Weiss, T. Kull & D.L. Taylor 2005. High specificity generally characterizes mycorrhizal association in rare lady's slipper orchids, genus Cypripedium. Molecular Ecology 14:613–626. CrossRef

Shefferson, R.P., D.L. Taylor, M. Weiß, S. Garnica, M.K. Mc-Cormick, S. Adams, H.M. Gray et al. 2007. The evolutionary history of mycorrhizal specificity among lady's slipper orchids. Evolution 61:1380–1390. CrossRef

Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30:2725–2729. CrossRef

Tedersoo, L.& M.E. Smith 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27:83–99. CrossRef

Tsai, W-C., A. Dievart, C-C. Hsu, Y-Y. Hsiao, S-Y. Chiou, H. Huang & H-H. Chen 2017. Post genomics era for orchid research. Botanical Studies 58(61):1–12. CrossRef

White, T.J., T. Burns, S. Lee, J. Taylor 1990. Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols. A guide to methods and applications, (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds), pp. 315–322, Academic Press, San Diego. CrossRef

Yagame, T., T. Orihara, M-A. Selosse, M. Yamato & K. Iwase 2012. Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytologist 193:178–187. CrossRef

Yagame, T., E. Funabiki, E. Nagasawa, T. Fukiharu & K. Iwase 2013. Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae). American Journal of Botany 100:1823–1830. CrossRef

Zhao X., J. Zhang, C. Chen, J. Yang, H. Zhu, M. Liu & F. Lv 2014. Deep sequencing–based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genomics 15:747. CrossRef

Zelmer, C.D., L. Cuthbertson & R.S. Currah 1996. Fungi associated with terrestrial orchid mycorrhizae and protocorms. Mycoscience 37:439–448. CrossRef

Zimmer, K., N.A. Hynson, G. Gebauer, E.B. Allen, M.F. Allen & D.J. Read 2007. Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytologist 175:166–175. CrossRef





© 2016-2018 Botanica Pacifica