Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation Preprint
Article first published online: 24 APR 2018 | DOI: 10.17581/bp.2018.07105

Low phenotypic plasticity of plants of monsoon tropical forest to light and their adaptation to scarce resources

Elena V. Novichonok1, Eugenia F. Markovskaya2, Artyom O. Novichonok2,3 & Julia A. Kurbatova4

1 Forest Research Institute, Karelian Research Centre RAS, Petrozavodsk, Russia
2 Petrozavodsk State University, Petrozavodsk, Russia
3 Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
4 A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia

Light is a limiting factor for plants growth and development in the tropical forest understory. At the same time, its characteristic feature is a highly heterogeneous distribution, to which the plants have to adapt. Adaptation is possible by means of phenotypic plasticity. We have assessed the phenotypic plasticity level of leaf parameters to the light factor in 17 species of undergrowth and understory layers. The majority of changes in leaf parameters in changing light conditions were determined by species differences (64.0 % on average). The studied species were divided into six groups according to their plasticity level. For each group, different leaf characteristics played a key role in light adaptation. Consequently, each of the studied species had its own means of light adaptation, and the adaptation strategy in the undergrowth setting was aimed at adaptation to a narrow range of light conditions. This was reflected in the low level of plasticity (the mean RDPI value was 0.12), which allowed species to occupy narrow ecological niches and ensured effective coexistence of plants in the context of limited resources.

Новичонок Е.В., Марковская Е.Ф., Новичонок А.О., Курбатова Ю.А. Низкая фенотипическая пластичность растений муссонного тропического леса к световому фактору и их адаптация к ограниченному количеству ресурсов. Свет является ограничивающим факторов для роста и развития растений подроста и подлеска в тропических лесах. При этом для него характерна сильная гетерогенность в распределении, к которой растения должны адаптироваться. Адаптация растений возможна за счет фенотипической пластичности. Нами была изучена степень фенотипической пластичности характеристик листа к световому фактору 17 видов подлеска и подроста. Бóльшая часть изменений характеристик листа при изменении световых условий была обусловлена видовыми различиями (в среднем 64,0 %). В соответствии с уровнем пластичности изученные виды были разделены на 6 групп. Для каждой группы при адаптации к световому фактору важную роль играют разные характеристики листа. Показано, что каждый из изученных видов имеет собственный способ адаптации к уровню освещенности, а стратегия адаптации в условиях подлеска направлена на приспособление к узкому диапазону световых условий. Это выражается в низком уровне пластичности (в среднем для всех изученных видов RDPI равнялся 0,12), что позволяет отдельным видам занимать узкую экологическую нишу и обеспечивает успешное сосуществование растений в условиях ограниченного количества ресурсов.

Keywords: adaptation, gap, leaf traits, light, RDPI, understory, адаптация, лесные «окна», световой фактор, степень пластичности, подлесок

PDF


References

Blanc, L., G. Maury-Lechon & J.-P. Pascal 2000. Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: an analysis of the successional trends. Journal of Biogeography 27 (1):141–157. CrossRef

Bongers, F. & J. Popma 1988. Is exposure-related variation in leaf characteristics of tropical wet forest species adaptive? In: Plant form and vegetation structure: adaptation, plasticity, and relation to herbivory (M.J.A. Werger, P.J.M. van der Aart, H.J. During & J.T.A. Verhoeven, eds), pp. 191–200, SPB Academic Publishing, Hague, The Netherlands.

Bradshaw, A.D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13:115–155. CrossRef

Chazdon, R.L. & N. Fetcher 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. Journal of Ecology 72(2):553–564. CrossRef

Chernov, Yu.I. 2005. Species diversity and compensatory phenomena in communities and biological systems. Zoologicheskii Zhyrnal 84(10):1221–1238 (in Russian with English summary). [Чернов Ю.И. 2005. Видовое разнообразие и компенсационные явления в сообществах и биотических системах // Зоологический журнал. Т.84, № 10. С.1221–1238].

Delagrange, S., C. Messier, M.J. Lechowicz & P. Dizengremel 2004. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiology 24(7):775–784. CrossRef

Deshcherevskaya, O.A., V.K. Avilov, B.D. Dinh, C.H. Tran & J.A. Kurbatova 2013. Modern climate of Cat Tien national park (Southern Vietnam): climatological data for ecological studies. Izvestiya, Atmospheric and Oceanic Physics 49(8):819–838. CrossRef

DeWitta, T.J., A. Siha & D.S. Wilson 1998. Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution 13(2):77–81. CrossRef

Fielding, H.A. 2007. Cluster and classification techniques for the biosciences. Cambridge University Press, Cambridge, pp. 46–68.

Givnish, T.J. 1988. Adaptation to sun and shade: a wholeplant perspective. Australian Journal of Plant Physiology 15(2):63–92. CrossRef

Grime, J.P. & J.M.L. Mackey 2002. The role of plasticity in resource capture by plants. Evolutionary Ecology 16(3):299–307. CrossRef

Grubb, P.J. 1998. A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics 1(1):3–31. CrossRef

Huete, A.R., N. Restepo-Coupe, P. Ratana, K. Didan, S.R. Saleska, K. Ichii, S. Panuthai & M. Gamo 2008. Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia. Agricultural and forest meteorology 148(5):748–760. CrossRef

Jennings, S.B., N.D. Brown & D. Sheil 1999. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. Forestry 72(1):59–74. CrossRef

Kuznetsov, A.N. & S.P. Kuznetsova 2013. Tropical monsoon forests of Vietnam (results of 20 years of phytoecological research). Biology Bulletin 40(2):187–196. CrossRef

Kuznetsov, A.N. 2005. Tropical dipterocarp forest. GEOS, Moscow 140 pp. (in Russian). [Кузнецов А.Н. 2003. Тропический диптерокарповый лес. Москва: ГЕОС. 140 с.].

Lamb, D., P.D. Erskine & J.A. Parrotta 2005. Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632. CrossRef

Lei, T.T., M. Lechowicz 1998. Diverse responses of maple saplings to forest light regimes. Annals of Botany 82(1):9–19. CrossRef

Lichtenthaler, H.K. & F. Babani 2004. Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Chlorophyll a Fluorescence (G.C. Papageorgiou, Govindjee, eds), pp. 713–736, Springer, Dordrecht.

Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350–382. CrossRef

Lüttge, U. 2008. Physiological ecology of tropical plants, 2nd edition. Springer-Verlag, Berlin, 458 pp.

Markesteijn L., P. Lourens & B. Frans 2007. Light-dependent leaf trait variation in 43 tropical dry forest tree species. American Journal of Botany 94(4):515–525. CrossRef

McKnight, T.L. & D. Hess 2000. Physical geography: a landscape appreciation, 6-th edition. Prentice Hall, New Jersey.

Niinemets, Ü. & F. Valladares 2004. Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology 6(3):254–268. CrossRef

Paletto, A. & V. Tosi 2009. Forest canopy cover and canopy closure: comparison of assessment techniques. European Journal of Forest Research 128(3):265–272. CrossRef

Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M.S. Bret-Harte et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234. CrossRef

Pigliucci, M. 2005. Evolution of phenotypic plasticity: where are we going now? Trends in Ecology & Evolution 20(9): 481–486. CrossRef

Popma, J., F. Bongers & M.J.A. Werger 1992. Gap-dependence and leaf characteristics of trees in a tropical low phenotypic plasticity of tropical plants to light land rain forest in Mexico. Oikos 63(2):207–214. CrossRef

Richards, P.W. 1952. The tropical rain forest. Cambridge University Press, Cambridge, 450 pp.

Rozendaal, D.M.A., V.H. Hurtado & L. Poorter 2006. Plasticity in leaf traits of 38 tropical tree species in response to light: relationships with light demand and adult stature. Functional Ecology 20:207–216. CrossRef

Sánchez-Gómez, D., M.A. Zavala & F. Valladares 2006. Seedling survival responses to irradiance are differentially influenced by low-water availability in four tree species of the Iberian cool temperate–Mediterranean ecotone. Acta Oecologica 30(3):322–332. CrossRef

Sultan, S.E. & F.A. Bazzaz 1993. Phenotypic plasticity in Polygonum persicaria. I. Diversity and uniformity in genotypic norms of reaction to light. Evolution 47(4):1009–1031. CrossRef

Sultan, S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5(12):537–542. CrossRef

Sun, X., Z. Lu, P. Li, Q. Jiang & Z. Lang 2006. Ecological adaptation of Eupatorium adenophorum populations to light intensity. Journal of Forestry Research 17(2):116–120. CrossRef

Szarzynsk, J. & D. Anhuf 2001. Micrometeorological conditions and canopy energy exchange of a neotropical rain forest (Surumoni-Crane Project, Venezuela). Plant Ecology 153(1-2):231–239. CrossRef

Valladares, F. & Ü. Niinemets 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics 39:237–257. CrossRef

Valladares, F. 2003. Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity. Progress in Botany 64:439–471. CrossRef

Valladares, F., D. Sanchez-Gomez & M.A. Zavala 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94(6):1103–1116. CrossRef

Valladares, F., E. Martinez-Ferri, L. Balaguer, E. Perez-Corona & E. Manrique 2000. Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytologist 148(1): 79–91. CrossRef

Vandekerckhove, K., R. de Wulf & N.N. Chinh 1993. Dendrological composition and forest structure of Nam Bai Cat Tien National Park, Vietnam. WWF International, Asia and Pacific Programme, VN 0007, Project Report, Hanoi.

Whitmore, T.C. 1996. A review of some aspects of tropical rain forest seedling ecology with suggestions for further enquiry. In: The ecology of tropical forest tree seedlings. Programme on Man and the Biosphere, UNESCO series, vol. 17, pp. 3–39. Parthenon, Paris, France.

Wintermans, J.F.G.M. & A. De Mots 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta 109(2):48–453. CrossRef

Zhang, Y.P., Y.X. Ma, Y.H. Liu & K.Y. Zhang 2000. Horizontal thermal characteristics at forest edges in a calm tropical area of China. Chinese Journal of Applied Ecology 11(2):205–209.





© 2016-2018 Botanica Pacifica