Botanica Pacifica

Research paper

Botanica Pacifica. A journal of plant science and conservation Preprint
Article first published online: 11 APR 2018 | DOI: 10.17581/bp.2018.07102

Mycolith (fungal phytolith) morphotypes and biosilification of proteins in wood-destroying and pileate fungi

Kirill S. Golokhvast1,2, Ivan V. Seryodkin1,2, Eugenia M. Bulakh 3, V.V. Chaika1, A.M. Zakharenko 1, A.S. Kholodov1, I.E. Pamirsky1 & G. Chung4

1 Engineering School, Far Eastern Federal University, Vladivostok, Russia
2 Pacific Geographical Institute FEB RAS, Vladivostok, Russia
3 Federal Scientific Center for the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
4 Department of Biotechnology, Chonnam National University, Chonnam, Republic of Korea

The process of biomineralization in fungi is discussed for the first time. The results of a comprehensive study of fungal phytoliths (mycoliths) using optical microscopy and RAMAN spectroscopy are presented. The RAMAN spectrum contains bands of crystalline silicon dioxide and amorphous silica. In all types of fungi and trees examined, two morphotypes of phytolite particles were identified with an aid of microscope, oblong and spherical. The rest of the particles were considered formless. To explain the mechanisms of biosilification, a bioinomatic analysis of biosilicon proteins homologues (silicateins, silacidins, silaffins, silicon transporters, silicase) in annotated fungal proteomes was carried out by in silico technique. The paper shows proteins of fungi, which can potentially participate in the formation of mycoliths.

Голохваст К.С., Середкин И.В., Булах Е.М., Чайка В.В., Захаренко А.М., Холодов А.С., Памирский И.Е., Чунг Ж. Морфотипы миколитов (грибных фитолитов) и биосилификация белков в грибах, разрушающих древесину. Впервые комплексно обсуждается процесс биоминерализации у грибов. Приводятся результаты комплексного изучения фитолитов грибов (миколитов) методами оптической микроскопии и RAMAN-спектроскопии. RAMAN-спектр содержит полосы кристаллического диоксида кремния и аморфного кремнезема. Во всех видах исследованных грибов и деревьев микроскопически установлены два морфотипа частиц фитолитов: продолговатые и шарообразные. Остальные частицы были бесформенные. Для объяснения механизмов был произведен биоинофрмационный анализ гомологов белков биосилификации (силикатеинов, силацидинов, силаффинов, транспортеров кремния, силиказы) в аннотированных протеомах грибов методом in silico. В работе показаны белки грибов, которые могут потенциально участвовать в процессе формирования миколитов.

Keywords: fungi, mycolith, phytolith, biomineralization proteins, грибы, миколиты, фитолиты, биоминерализующие белки



Ball, T., K. Chandler-Ezell, R. Dickau, N. Duncan, T.C. Hart, J. Iriarte, C. Lentfer, A. Logan, H. Lu & M. Madella 2016. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. Journal of Archaeological Science 68: 32–45. CrossRef

Golokhvast, K.S., O.R. Kudryavkina, A.M. Zakharenko, V.V. Chaika, A. Kholodov, I.V. Seryodkin, A.A. Sergievich & A.A. Karabtsov 2015. Phytolithes (SiO2 microparticles) of some multicellular brown algae. Der Pharma Chemica 7: 307–311.

Golokhvast, K.S., I.V. Seryodkin, V.V. Chaika, A.M. Zakharenko & I.E. Pamirsky 2014. Phytoliths in taxonomy of phylogenetic domains of plants. BioMed research international 4: 648326. CrossRef

Hodson, M.J. 2016. The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science 68:62–69. CrossRef

Kaiser, T. & K.W. Benz 1998. Floating-zone growth of silicon in magnetic fields. III. Numerical simulation. Journal of Crystal Growth 183:564–572. CrossRef

Katz, O., S. Lev-Yadun & P. Bar 2015. Plant silicon and phytolith contents as affected by water availability and herbivory: integrating laboratory experimentation and natural habitat studies. Silicon. P. 1–3. DOI:0.1007%2Fs12633-015-9310-y Madella, M., A. Alexandré & T. Ball 2005. International code for phytolith nomenclature 1.0. Annals of Botany 96:253–260.

Piperno, D.R. 2006. Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Altamira Press, Latham, 238 pp.

Richthammer, P., M. Börmel, E. Brunner & K.H. van Pée 2011. Biomineralization in diatoms: The role of silacidins. ChemBioChem 12:1362–1366. CrossRef

Rudall, P.J., C.J. Prychid & T. Gregory 2014. Epidermal patterning and silica phytoliths in grasses: an evolutionary history. The Botanical Review 80:59–71. CrossRef

Saggu, M., J. Liu & A. Patel 2015. Identification of subvisible particles in biopharmaceutical formulations using Raman spectroscopy provides insight into polysorbate 20 degradation pathway. Pharmaceutical Research 32:2877–2888. CrossRef

Schröder, H.C., A. Krasko, D. Brandt, M. Wiens, M.N. Tahir, W. Tremel & W.E.G. Müller 2007. Silicateins, silicase and spicule-associated proteins: synthesis of demosponge silica skeleton and nanobiotechnological applications. In: Porifera Research: Biodiversity, Innovation and Sustainability (M.R. Custodio, G. L’obo-Hajdu, E. Hajdu & D. Muricy, eds), pp. 581–592, Museu Nacional, Rio de Janeiro.

Sørensen, I., F.A. Pettolino, S.M. Wilson, M.S. Doblin, B. Johansen, A. Bacic & W.G.T. Willats 2008. Mixed-linkage (1→ 3),(1→ 4)-β-d-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. The Plant Journal 54: 510–521. CrossRef

Wainwright, M., K. Al-Wajeeh & S.J. Grayston 1997. Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media. Mycological Research 101:933–938. CrossRef

Zurro, D., J.J. García-Granero, C. Lancelotti & M. Madella 2016. Directions in current and future phytolith research. Journal of Archaeological Science 68:112–117. CrossRef

© 2016-2018 Botanica Pacifica