![]() | |||
Survey paper Botanica Pacifica. A journal of plant science and conservation Preprint Article first published online: 24 OCT 2015 | DOI: 10.17581/bp.2015.04216 Phylogenesis, Origin and Kinship of the Charophytic Algae Galina M. Palamar-Mordvintseva 1, Petro M. Tsarenko 1 & Sophia Barinova 2 1 N.G. Kholodny Institute of Botany, NAS of Ukraine, Kiev, Ukraine 2 Institute of Evolution, University of Haifa, Haifa, Israel We analyzed phylogenetic reconstructions of charophytes (streptophyte) algae and assessed the importance of new phylogenetic hypotheses on some aspects of the evolution of plants. We give attention to the progress made in modern molecular biology study, and the occurrence of biological features and life cycles of organisms and multicellular gravitropism based on the results of molecular physiology and genome evolution. We analyzed generalized information on the significance and place of Сharophyta in the development of plants, how these plants were settled on land and their further development. We represent ideas about the modern interpretation of ancestral forms and consanguinity of this group of algae with other taxa of plants. We used a phylogenetic approach in analysis of formation and methods of cell division, with a deeper concept of complexity of the process of plant organization (the transition from unicellular to multicellular). We assessed evolutionary significance of the gravitropism phenomenon and some features of molecular and physiological changes in plant organisms during the change of environments and their outlet to the earth. Summarized and analyzed the changes in the modern paradigm in respect of group of streptophytes algae which can be assessed as a basis of other plants and close related to Zygnematales-line group of algae on the phylogenetic tree. Паламарь-Мордвинцева Г.М., Царенко П.М., Баринова С.С. Филогенез, происхождение и родственные связи харофитовых водорослей. Представлены материалы анализа филогенетических реконструкций харофитовых водорослей, а также освещена значимость новых филогенетических гипотез о некоторых аспектах эволюции растений, с учетом современного прогресса в их молекулярно-биологическом изучении, раскрытии особенностей биологии жизненных циклов и развития организмов, возникновении многоклеточности и гравитропизма, с учетом результатов молекулярной физиологии и эволюции генома. Обобщены данные о формировании представлений о значимости харофитов в становлении мира растений, заселении ими суши и дальнейшего их развития. Обсуждается современная трактовка анцестральных форм и родственных связях этой группы водорослей с другими таксонами растительного мира. С использованием филогенетического подхода показаны особенности формирования и деления клетки, а также особенности процесса усложнения растительной организации (переход от одноклеточности к многоклеточности) и молекулярно-физиологических изменений растительных организмов в период смены среды обитания и выхода их на сушу. Обобщены и проанализированы материалы относительно смены или модификации современной парадигмы о близкородственной группе стрептофитовых водорослей к базису других растений и родственной сестринской линии Zygnematales на филогенетическом древе. Keywords: Сharophytes, phylogenies, evolution, origin, phylogenetic relationships, харофиты, филогенез, эволюция, родственные связи References Adam Z., Turmel M., Lemieux C. & Sankoff D. 2007. Common invervals and symmetric difference in a model- free phylogenomics, with an application to streptophyte evolution. Journal of Computational Biology 14:436–445. CrossRef Alberts B., Braiy D., Levis J. et al. 1989. Molecular biology of the cell. 2nd ed. Garland Publishing, New York, 1218 pp. Barinova S. & Romanov R. 2014a. A new Chara locality in the protected area of the Galilee Mountains, Israel. Natural Resources and Conservation 2(5):80–85. Barinova S. & Romanov R. 2014b. Unique locality with charophytes in the Mount Arbel National Park, Israel. Elixir Bio Diversity 77:28932–28936. Barinova S. & Romanov R. 2015a. How a new locality of algal community in the Negev Desert, Israel was formed. Expert Opinion on Environmental Biology 4(2):1–7. Barinova S. & Romanov R. 2015b. Charophyte community in the lowermost locality in the world near the Dead Sea, Israel. International Journal of Plant & Soil Science 6(4): 229–243. CrossRef Barinova S.S., Yehuda G. & Nevo E. 2010. Comparative analysis of algal communities of northern and southern Israel as bearing on ecological consequences of climate change. Journal of Arid Environment 74:765–776. CrossRef Bateman R.M., Grane P.R., DiMichele W.A. et al. 1998. Early evolution of land plants: phylogeny, physiology and ecology of the primary land radiation. Annual Review of Ecology, Evolution, and Systematics 29:263–292. CrossRef Becker B. & Marin B. 2009. Streptophyte algae and the origin of embriophytes. Annals of Botany 103: 999–1004. CrossRef Bhattacharya D. & Medlin L. 1998. Algal phylogeny and the origin of land plants. Plant Physiology 116: 9–15. CrossRef Bhattacharya D., Surek B., Rusing M. et al. 1994. Group 1 introns are inherited throught common aycestry in the nuclear-encoded rRNA of Zygnematales (Chlorophyta). Proceedings of the National Academy of Sciences of USA 91(21):9916–9920. CrossRef Bold H.C. & Wynne M.J. 1985. Introduction to the algae. Prentice-Hall, New Jersey, 720 p. Bowe L.M., Coat G., de Pamphilis C.W. 2000. Phylogeny of seed plants based on all three genomic compartmens: Extant gymnosperms are monophyletic and Gnetales closest relatives are conifers. Proceedings of the National Academy of Sciences of USA 97:4092–4097. CrossRef Boykiw E. 2011. The effect of settling dust in the Arava Valley on the performance of solar photovoltaic panels. The Senior Thesis in Department of Environmental Science Allegheny College Meadville, Pennsylvania, USA, 36 pp. Braun M., Limbach C. 2006. Rhisoids and protonemata of characean algae model cells for research on polarized growth and plant gravity sensing. Protoplasma 229: 133–142. CrossRef Bremer K. 1985. Summary of green plant phylogeny and classification. Cladistics 1: 369–385. CrossRef Bremer K.C., Humphries I., Mishler B.D. & Churchill S.P. 1987. On cladistic relationship in green plants. Taxon 36: 339–349. CrossRef Brinkmann H. & Philippe H. 2008. Animal phylogeny and large-scale sequencing progress and pittfals. Journal of Systematics and Evolution 46:274–286. Chapman R.L., Buchheim M.A., Delwiche C.F. et al. 1998. Molecular systematic of the green algae. In: The molecular systematics of plants. 2 (D.E. Soltis, P.S. Soltis & J.J. Doyle, eds.), pp. 508–540, Kluver Acad. Publ., Massachusets. CrossRef Chaw S.M., Parkinson C.L., Cheng Y.C. et al. 2000. Seed plant phylogeni inferred from all three plant genomes: Monophyly of extant gymnosperms fnd origin of Gnetales from conifers. Proceedings of the National Academy of Sciences of USA 97: 4086–4091. CrossRef Coocke T.J., Poli D., Sztein A.E. & Cohen J.D. 2002. Evolutionary patterns in auxin action. Plant Molecular Biology 49: 319–338. CrossRef Darwin C. 1859. On the origin of species by means of natural selection. London. 556 pp. Delsuс F., Brinkmann H. & Philippe H. 2005. Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics 6:361–375. CrossRef Delviche C.F., Graham L.E. & Thomson N. 1989. Lignin- like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245:399–401. CrossRef Faiman D. 1998. Solar Energy in Arid Frontiers: Designing a Photovoltaic Power Plant for Kibbutz Samar, Israel. In: The Arid Frontier: Interactive Management of Environment and Development, (Bruins H.J. & H. Lithwick, eds.), pp. 321–336. Kluwer Academic Publishers, Boston. CrossRef Farley L. 1982. Gametes and spores. Ideas about Sexual Reproduction. Johns Hopkins University Press, Baltimore, 299 pp. Finet C., Timme R.E., Delwiche C.F. & Marlétaz F. 2010. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology 20(24): 2217–2222. CrossRef Finet C., Timme R.E., Delwiche C.F. & Marlétaz F. 2012. Origin of land plants revisited in the light of sequence contamination and missing data. Current Biology 22(15): 1456–1457. CrossRef Friedl T. 1997. The evolution of the green algae. Plant Systematics and Evolution (Suppl.) 87:87–101. CrossRef Friml J., Wisniewska J., Benkova E. et al. 2002. Lateral relocation of auxin efflux PIN3 mediates tropism in Arabidopsis. Nature 415:803–809. CrossRef Galweiler L., Guan C., Muller A. et al. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230. CrossRef Gontcharov A.A. 2008. Phylogeny and classification of Zygnematophyceae (Streptophyta): current state of affairs. Fottea 8:87–104. CrossRef Gontcharov A.A. 2009. Problems of taxonomy of the conjugates (Zygnematophyceae, Streptophyta) in relation to molecular-phylogenetic data. Botanicheskii Zhurnal 94(10): 1417–1438 (in Russian with English summary). [Гончаров А.А. 2009. Проблемы систематики коньюгат (Zygnematophyceae, Streptophyta) с точки зрения молекулярно-филогенетических данных // Ботанический журнал. Т. 94, №10. С. 1417–1438]. Graham L.E. 1993. Origin of land plants. John Wiley & Sons, New York, 700 pp. Graham L.E., Delviche C.F. & Mishler B.D. 1991. Phylogenetic connection between the "green flgae" and the "bryophytes". Advances in Bryology 4: 213–294. Graham S.W. & Olmstead R.G. 2000. Utility of 17 chloroplast genes for interring the phylogeny of the basal angiosperms. American Journal of Botany 87:1712–1730. CrossRef Grant M.C. & Proctor V.W. 1972. Chara vulgaris and C. contraria: patterns of reproductive isolation for two cosmopolitan species complexes. Evolution 26(2):267–81. CrossRef Grosberg R.K. & Strathmann R.R. 2007. The evolution of multicellularity: A minor major transition? Annual Review of Ecology, Evolution, and Systematics 38:621–654. CrossRef Hageman W. 1999. Towards an organismic concept of land plants: The marginal blasnozone and the development of the vegetation body of selected frondose gametophytes of liverworts and ferns. Plant Systematics and Evolution 216:81–302. CrossRef Haig D. 2010. What do we know about charophyte (streptophyta) life cycles? Journal of Phycology 46:860–867. CrossRef Hedges S.B., Blai J.E., Venturi M.L., & Shoe J.L. 2004. A molecular timescale of eucariote evolution and the rise of complex multicellular life. BMC Evolutionary Biology 4: 2. CrossRef Hennig W. 1966. Phylogenetic systematics. The University of Illinios Press, Urbana, 263 pp. Hilu K.W., Borsch T., Muller K., Soltis P.S., Savolainen V., Chase M.W., Powell M.P., Alice L.A., Evans R., Sauquet H., Neihuis C., Slotta T.A.B., Rohwer R.G., Campbell C.S. & Chatrou L.W. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90:1758–1776. CrossRef Joye D.A. & Rey-Boissezon A. 2015. Will charophyte species increase or decrease their distribution in a changing climate? Aquatic Botany 120:73–83. CrossRef Ju C., van de Poel B., Cooper E.D., Thierer J.H. et al. 2015. Conservation of ethylene as a plant hormone over 450 million years of evolution. Nature Plants 1:1–7. CrossRef Karol K.G., McCourt R.M., Cimino M.T. & Delwiche C.F. 2001. The closest living relatives of land plants. Science 294:2351–2353. CrossRef Karsten U. & Garcia-Pichel F. 1996. Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (cyanobacteria): a chemosystematic study. Systematic and Applied Microbiology 19(3):285–94. CrossRef Kelch D.G., Driskell A. & Mishler B.D. 2004. Inferring phylogeny using genomic characters: a case study using land plant plastomes. In: Molecular systematic of bryophytes, (Goffinet, B., V. Hollowell & R. Magil, eds.), pp. 3–11, Missouri Botanical Garden Press, St. Louis. Kenrick P. & Crane P.R. 1997. The origin and early diversification of land plants. Nature 389:33–39. CrossRef Klambt D., Knauth B. & Dittman I. 1992. Auxin dependent growth of rhizoid of Chara globularis. The Evolution of Plant Physiology 85:537–540. CrossRef Klish M., Sinha R.P. & Hader D.-P. 2002. UV-absorbing compounds in algae. Current Topics of Plant Biology 3: 113–120. Kranz H.D., Miks D., Siedler M.-L. et al. 1995. The origin of land plants: phylogenetic relationships among charophytes, briophytes and vascular plants infrrred from complete small-subunit ribosomal RNA gene sequences. Journal of Molecular Evolution 41:74–84. CrossRef Krassilov V.A. 2014. Evolution: System Theory. Pensoft, Sofia- Moscow, Bulgaria, 414 pp. Krasnov H., Katra I., Koutrakis P. & Friger M.D. 2014. Contribution of dust storms to PM10 levels in an urban arid environment. Journal of Air and Waste Management Association 64(1):89–94. CrossRef Krause W. 1997. Charales (Charophyceae). Süßwasserflora von Mitteleuropa, 18. Gustav Fischer Verlag, Stuttgart, 202 pp. Kyansen-Romashkina N.P. 1981. Paleoecological peculiarities of Cretaceous and Paleogenic charophytes. In: Vsesoyuznoe paleoal'gologicheskoe soveshchanie (Nov. 17-19, 1981, Kiev), pp. 99–100, Naukova Dumka, Kiev (in Russian). [Кянсен-Ромашкина Н.П. 1981. Палеоэкологические особенности меловых и палеогеновых харофитов. Всесоюзное палеоальгологическое совещание (Киев, 17-19 нояб. 1981 г.). Тез. докл. Киев: Наук. Думка. С. 99–100]. Laurin-Lemay S., Brinkmann H. & Philippe H. 2012. Origin of land plants revisited in the light of sequence contamination and missing data. Current Biology 22(15): R593–R594. CrossRef Lemieux C., Otis C. & Turmel M. 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652. CrossRef Lemieux C., Otis C. & Turmel M. 2007. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represent the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biology 5:2. CrossRef Levis L.A. & McCourt R.M. 2004. Green algae and the origin of land plants. American Journal of Botany 91:1535–1556. CrossRef Lucas W.L. & Lee J.Y. 2004. Plasmodesmata as a supracellular control nework in plants. Nature Reviews Molecular Cell Biology 5:712–726. CrossRef Manhart J.R. & Palmer J.D. 1990. The gain of two chloroplast transfer-RDA introns marks the green ajgae ancesrors of lamd plast. Nature 345:268–270. CrossRef Marchant H.J. & Pickett-Heaps J.D. 1973. Mitosis and cytokinesis in Coleochaete scutata. Journal of Phycology 9:461–471. CrossRef Martín-Closas C. & Wang Q. 2008. Historical biogeography of the lineage Atopochara trivolvis Peck 1941 (Cretaceous Charophyta). Palaeogeography, Palaeoclimatology, Palaeoecology 260: 435–451. CrossRef Martin-Closas C. 2003. The fossil record and evolution of freshwater plants: A review. Geologica Acta 1(4):315–338. Maslov V.P. 1966. Some Cenozoic charophytes in the south of the USSR and the methods of their studies. In: Fossil charophytes of the USSR, (V.P. Maslov & V.A. Vakhromeev, eds.), pp. 10–200, Nauka, Moscow (in Russian). [Маслов В.П. 1966. Некоторые кайнозойские харофиты юга СССР и методика их изучения // Ископаемые харофиты СССР. Москва: Наука. С. 10–200]. Maslov V.P. 1963. Introduction into studying of fossil Charophyte algae. Geologicheskii Institut SSSR, Moscow, 104 рр. (in Russian). [Маслов В.П. Введение к изучению выкопных харовых водорослей. М.: Изд-во АН ССР. 104 с.]. Mattox K.R. & Stewart K.D. 1984. Classification of gree algae: a concept based on comparative cytology. In: Systematics of the green algae, (D.E.G. Irvine & D.M. John, eds.), pp. 29–72, Academic Press, London, Orlando. McCourt R.M., Karol K.G., Guerlysquine M. & Feist M. 1996. Phylogeny of extant genera in the family Characeae (division Charophyta) based on rbcL sequence and morphology. American Journal of Botany 83: 125–131. CrossRef McCourt R.M., Delwiche C.F. & Karol K.G. 2004. Charophyte algae and long plant origins. Trends in Ecology & Evolution 19(12): 661–666. CrossRef McManus H.A. & Qiu Y-L. 2008. Life cycles in major lineages of fotosynthetic eukaryotes, with a special reference to the origin of land plants. Fieldiana Botany 47: 17–33. CrossRef Melkonian M., Marin B. & Surek B. 1995. Phylogeny and evolution of the algae. In: Biodeversity and evolution, (Arai, R., M. Kato & Y. Doi, eds.), pp. 153–176. The National Science Museum Foundation, Tokyo. Mishler B.D. & Churchill S.P. 1985. Transition to land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics 1:305–328. CrossRef Palamar-Mordvintseva G.M. & Tsarenko P.M. 2009. Place and significance of Charales in the organic world system. Al'gologia 11(4):305–3014 (in Russian). [Паламарь-Мордвинцева Г.М., Царенко П.М. Место и значение Charales в системе органического мира. Альгология. Т. 19, № 2. С. 117–134]. Palamar-Mordvintseva G.M. 1980. Cytomorphological polymorphism and systematics of desmidial algae (Desmidiales). Ukrayins'kii Botanichnii Zhurnal 37(1):36–43 (in Ukrainian, with English summary). [Паламар-Мордвинцева Г.М. 1980. Цитологічний поліморфізм і систематика десмідієвих водоростей (Desmidiales). Український ботанічний журнал Т. 37, №1. C. 36–43]. Palamar-Mordvintseva G.M. 1982. Desmidian algae of the Ukrainian SSR. Naukova dumka, Kiev, 238 pp. (in Russian). [Паламар-Мордвинцева Г.М. 1982. Десмидиевые водоросли Украинской ССР. Киев: Наукова думка. 238 c. ]. Palme K., Dovzhenko A. & Ditengou F.A. 2006. Auxin transport and gravitational research: perspective. Protoplasma 229:175–181. CrossRef Paponov I.A., Teale W.D., Trebar M. et al. 2005. The PIN auxin efflux facilitators: evolutionary and functional perspective. Trends in Plant Sciense 10:170–177. CrossRef Pickett-Heaps J.D. & Marchant H.J. 1972. The phylogeny of the green algae: a new proposal. Cytobious 6: 255–264. Pickett-Heaps J.D. 1967. Ultrastructure and differentiation in Chara sp. II. Mitosis. Australian journal of biological sciences 20:883–894. Pickett-Heaps J.D. 1975. Green algae. Structure, reproduction and evolution in selected genera. Sinauer Assoc., Stanford, 606 pp. Pickett-Heaps J.D., Gunning B.E.S., Brown R.C. et al. 1999. The cytoplast concept in dividing plant cells: Cytoplasmic domains and the evolution of spatially organized cell division. American Journal of Botany 86:153–172. CrossRef Qiu Y-L. 2008. Phylogeny and evolution of charophytic algae and land plants. Journal of Systematics and Evolution 46(3):287–306. Qiu Y-L., Lee J., Bernasconi-Quadroni F. et al. 2000. Phylogeny of basal anhiosperms: Analyses of five genes from three genomes. International Journal of Plant Sciences 161:S3–S27. Qiu Y-L., Li L.B., Wang B. et al. 2007. A nonflovering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Sciences 168:691–708. CrossRef Qiu Y-L., Cho Y.R., Cox J.C. & Palmer J.D. 1998. The gain of three mitochondrial introns identifies livervorst as the earliest land plants. Nature 394:671–674. CrossRef Raven J.A. & Edwards D. 2001. Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany 52:381–401. CrossRef Rodriguez-Ezpeleta N., Phillipe H., Brinkmann H., Becker B. & Melconian M. 2007. Phylogenetic analyses of nuclear, mitochondrial and plastid multigene data sets support the placement of Mesostigma in the Streptophyta. Molecular Biology and Evolution 24:723–731. CrossRef Ruhfel B.R., Gitzendanner M.A., Soltis P.S., Soltis D.E. & Burleigh G. 2014. From algae to angiosperms-infwrring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Environmental Biology 14:23. Saidakovsky L.Ya. & Shaikin I.M. 1976. Stratigraphic importance of Charophyta in Ukraine. In: Tectonica and Stratigraphy. Issue 2., pp. 74–86, Naukova Dumka, Kiev (in Russian with Englich abstract). [Сайдаковский Л.Я., Шайкин И.М. Стратиграфическое значение харофитов Украины // Тектоника и стратиграфия. Вып. 2. Киев: Наук. Думка. С. 74–86]. Saidakovsky L.Ya. 1993. Permian and Triassic Charophyta of the Earth. Al'gologia 3(2):76–82 (in Russian with English summary). [Сайдаковский Л.Я. Пермские и триасовые Charophyta Земного шара // Альгология. T. 3, № 2. С. 76–82]. Shaikin I.M., 1988. Evolution of Charophytes in Phanerozoic. Ukrayin'skii Botanichnii Zhurnal 45(6):79–84 (in Ukrainian, with English summary). [Шайкін I.M. Еволюція харових водоростей в фанерозої // Український ботанічний журнал. Т. 45, № 6. С. 79–84]. Taylor E.L., Taylor N.T. & Krings M. 2009. Paleobotany: The Biology and Evolution of Fossil Plants. 2 ed. Elsevier, London, New York, 1252 pp. Timme R.E., Bachvaroff T.R. & Delwiche Ch.F. 2012. Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE 7(1):e29696(1–7). Tompson R.H. 1969. Sexual reproduction in Chaetosphaeridium globosum (Nordst) Klebahn (Chlorophyceae) and description of a new species to science. Journal of Phycology 5:285–290. CrossRef Turmel M., Otis C. & Lemieux C. 2005. The complete chloroplast DNA sequence of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwernt extensive changes during the evolution of the Zygnematales. BMC Biology 3:22(1–13). Turmel M., Otis C. & Lemieux C. 2009. The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the Pedinomonadales and Chlorellales. Molecular Biology and Evolution 26:2317–2331. CrossRef Turmel M., Pombert J.F., Charlebois P., Otis C. & Lemieux C. 2007. The green algal ancestry of land plants as revealed by the chloroplast genome. International Journal of Plant Sciences 168:679–689. CrossRef Turmel M., Ehara M., Otis C. & Lemieux C. 2002. Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunits rRNA gene sequences. Journal of Phycology 38:364–375. CrossRef Turmel M., Gagnon M.C., O'Kelly C.J., Otis C. & Lemieux C. 2009. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Molecular Biology and Evolution 26:631–648. CrossRef Van den Hoek C., Mann D.G. & Jahns H.M. 1995. Algae: an introduction to phycology. Cambridge University Press, Cambridge, 700 pp. Wille N. 1912. Om udviklingen af Ulothrix flaccida Kütz. Svensk Botanisk Tidskrift 6:447–458. Wodniok S., Brinkmann H., Glöckner G., Heidel A.J., Philippe H. et al. 2011. Origin of land plants: Do conjugating green algae hold the key? BMC Evolution Biology 11: 104. Yehuda G., Barinova S.S., Krugman T., Pavlicek T., Nov Y. & Nevo E. 2013. Microscale adaptive response of charophytes of the Negev Desert, Israel: species divergences by AFLP. Natural Resources and Conservation 1(3):55–64. Yoon H.S., Hacket J.D., Ciniglia C., Pinto G. & Bhattacharya D. 2004. A molecular timeline for the origin of fotosynthetic eucariotes. Molecular Biology and Evolution 21: 809–818. Zhong B., Xi Zh., Goremykin V.V., Fong R., Mclenachan P.A., Novis Ph.M., Davis Ch.C. & Penny D. 2013. Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Molecular Biology and Evolution 31(1):177–183. CrossRef Zimmer A., Lang D., Richardt S., Franck W., Reski R. & Rensing S.A. 2007. Dating the early evolution of plants: detection and molecular clock analyses of orthologs. Molecular Genetics and Genomics 278:393–402. CrossRef
|