![]() | |||
Opinion Paper Botanica Pacifica. A journal of plant science and conservation Preprint Article first published online: 20 OCT 2015 | DOI: 10.17581/bp.2015.04212 Complex Dynamics of Multilocus Genetic Systems: A Revisit of Earlier Findings in Relation to Ecosystem Evolution Sviatoslav R. Rybnikov, Zeev M. Frenkel, Valery M. Kirzhner & Abraham B. Korol Institute of Evolution, University of Haifa, Haifa, Israel In our earlier studies on polymorphism and recombination in multilocus genetic systems subjected to cyclical selection, situations were found where allele frequencies demonstrated diverse patterns of complex limiting behavior (CLB). In the present paper, these findings are revisited with respect to their explanatory potential for ecosystem evolution. In particular, we show that the revealed CLB patterns and conditions for their emergence are consistent with key regularities of ecosystem evolution suggested by V.A. Krassilov, namely: (i) ecosystem evolution is irreducible to dynamics of allele frequencies; (ii) release of genetic variation is affected by the type of ecosystem evolution; (iii) ecosystem turnovers are potentially sensitive to dynamics of allele frequencies. Рыбников С.Р., Френкель З.М., Киржнер В.М., Король А.Б. Сложная динамика многолокусных генетических систем: анализ ранее полученных результатов в свете эволюции экосистем. В наших предыдущих исследованиях, посвященных полиморфизму и рекомбинации в многолокусных генетических системах, подверженных циклическому отбору, были выявлены ситуации, когда частоты аллелей демонстрировали различные виды сложного предельного поведения (СПП). В данной работе рассматривается возможность интерпретации полученных ранее результатов в свете эволюции экосистем. В частности, показано, что обнаруженные виды СПП и условия их возникновения согласуются с основными закономерностями эволюции экосистем, сформулированными В. А. Красиловым, а именно: (i) эволюция экосистем несводима к динамике частот аллелей; (ii) высвобождение генетической изменчивости определяется характером эволюции экосистем; (iii) смена экосистем может провоцироваться изменениями в динамике частот аллелей. Keywords: multilocus genetic systems, complex dynamics, ecosystem evolution, polymorphism, recombination, многолокусные генетические системы, сложная динамика, эволюция экосистем, полиморфизм, рекомбинация References Altenberg L. 1991. Chaos from linear frequency-dependent selection. American Naturalist 138(1):51–68. CrossRef Bauer E.S. 1935. Theoretical Biology. Institute of Experimental Medicine, Moscow, Leningrad, 206 pp. (in Russian). [Бауэр Э.С. 1935. Теоретическая биология. Москва; Ленинград: Изд-во ВИЭМ. 206 с.]. Butterfield N.J. 2007. Macroevolution and macroecology through deep time. Palaeontology 50(1):41–55. CrossRef Carja O., Liberman U. & Feldman M.W. 2014. Evolution in changing environments: modifiers of mutation, recombination, and migration. Proceedings of the National Academy of Sciences of the United States of America 111(50):17935–17940. CrossRef Charlesworth B. 1971. Selection in density-regulated populations. Ecology 52(3):469–474. CrossRef Charlesworth B. 1993. Directional selection and the evolution of sex and recombination. Genetical Research 61(03): 205–224. CrossRef Dobzhansky T. 1937. Genetics and the origin of species. Columbia University Press, New York, 364 pp. Erwin D.H. 2000. Macroevolution is more than repeated rounds of microevolution. Evolution & Development 2(2): 78–84. CrossRef Gladyshev G.P. 1997. Thermodynamic Theory of the Evolution of Living Beings. Nova Science, Commack, NY, 142 pp. Gould S.J. 1976. This view of life: Darwin's untimely burial. Natural History 85(8):24–30. Kirzhner V.M., Korol A.B., Ronin Y.I. & Nevo E. 1994. Cyclical behavior of genotype frequencies in a two-locus population under fluctuating haploid selection. Proceedings of the National Academy of Sciences of the United States of America 91(24):11432–11436. CrossRef Kirzhner V.M., Korol A.B. & Nevo E. 1996. Complex dynamics of multilocus systems subjected to cyclical selection. Proceedings of the National Academy of Sciences of the United States of America 93(13):6532–6535. CrossRef Kirzhner V.M., Korol A.B. & Nevo E. 1998. Complex limiting behaviour of multilocus genetic systems in cyclical environments. Journal of Theoretical Biology 190(3):215–225. CrossRef Korol A.B. 1999. Selection for adaptive traits as a factor of recombination evolution: evidence from natural and experimental populations (a review). In: Evolutionary Theory and Processes: Modern Perspectives (S.P. Wasser, ed.), pp. 31–53, Kluwer Academic Publishers, Dordrecht. CrossRef Korol A.B., Kirzhner V.M. & Nevo E. 1998. Dynamics of recombination modifiers caused by cyclical selection: interaction of forced and auto-oscillations. Genetical Research 72(02):135–147. CrossRef Korol A.B, Preygel I.A. & Preygel S.I. 1994. Recombination Variability and Evolution. Chapman & Hall, London, 361 pp. Krassilov V.A. 1995. Ecosystem and Egosystem Evolution. Pensoft, Sofia, 172 pp. Krassilov V.A. 2002. Character parallelism and reticulation in the origin of angiosperms. In: Horizontal Gene Transfer (M. Syvanen & C.I. Kado, eds.), pp. 373–382, Academic Press, London. CrossRef Krassilov V.A. 2003. Terrestrial Palaeoecology and Global Change. Pensoft, Sofia, 464 pp. Krassilov V.A. 2014a. On pragmatism, life, and evolution. International Journal of Philosophy 2(6):72–79. CrossRef Krassilov V.A. 2014b. Evolution: System Theory. Pensoft, Sofia, 414 pp. Krassilov V. & Barinova S. 2013. Sea level – geomagnetic polarity correlation as consequence of rotation geodynamics. Earth Science 2(1):1–8. CrossRef Krassilov V., Barinova S. & Rybnikov S. 2014. Rotation forcing of tectonics and climate. Earth Science 3(3):68–75. CrossRef Kun L.A. & Lyubich Y.I. 1979. Convergence to equilibrium under the action of additive selection in multilocus multiallele population. Doklady Akademii Nauk SSSR 249(5):1052–1054 (in Russian). [Кун Л.А., Любич Ю.И. 1979. Сходимость к равновесию под действием аддитивного отбора в полилокусной полиаллельной популяции // Доклады АН СССР. Т. 249, № 5. С. 1052–1054]. Laland K.N., Uller T., Feldman M.W., Sterelny K., Müller G.B., Moczek A. & Odling-Smee J. 2015. The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences 282(1813):20151019. CrossRef Moran P.A. 1962. The Statistical Processes of Evolutionary Theory. Oxford University Press, Oxford, 200 pp. Nicolis G. & Prigogine I. 1977. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. Wiley, New York, 512 pp. Otto S.P. & Michalakis Y. 1998. The evolution of recombination in changing environments. Trends in Ecology & Evolution 13(4):145–151. CrossRef Parsons P.A. 2005. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biological Reviews 80(4):589–610. CrossRef Philipchenko Yu.A. 2011. Evolutionary Idea in Biology. Librokom, Moskva, 221 pp. (in Russian). [Филипченко Ю.А. 2011. Эволюционная идея в биологии. Москва: Либроком. 221 с.]. Sæther B.E. & Engen S. 2015. The concept of fitness in fluctuating environments. Trends in Ecology & Evolution 30(5):273–281. CrossRef Sasaki A. & Iwasa Y. 1987. Optimal recombination rate in fluctuating environments. Genetics 115(2):377–388. Schneider E.D. & Kay J.J. 1994. Complexity and thermodynamics: towards a new ecology. Futures 26(6):626–647. CrossRef Shapiro J.A. 2011. Evolution: A View from the 21st Century. FT Press, Upper Saddle River, NJ, 272 pp. Simons A.M. 2002. The continuity of microevolution and macroevolution. Journal of Evolutionary Biology 15(5):688–701. CrossRef Weber B.H., Depew D.J., Dyke C., Salthe S.N., Schneider E.D., Ulanowicz R.E. & Wicken J.S. 1989. Evolution in thermodynamic perspective: an ecological approach. Biology and Philosophy 4(4):373–405. CrossRef Wicken J.S. 1987. Evolution, Thermodynamics, and Information: Extending the Darwinian Program. Oxford University Press, Oxford, 258 pp.
|