Botanica Pacifica

Taxonomic novelties

Botanica Pacifica. A journal of plant science and conservation Preprint
Article first published online: 26 SEP 2015 | DOI: 10.17581/bp.2015.04207

Stomatal Movement and Stomatal Formation Mechanisms Utilize the Same Regulatory Genes

Dina Mukha 1, 3, Boris Ostretsov 1, Dzmitry Mukha 1, 2 & Leonid Brodsky 1, 2

1 Tauber Bioinformatics Research Center, University of Haifa, Israel
2 Department of Evolutionary and Environmental Biology, Faculty of Life Science, University of Haifa, Israel
3 Pine Biotech Inc, Biloxi, MS, USA

The climate changes across geological time are mirrored in paleontological fossils of stomata morphology. Professor Krassilov significantly contributed to a study of stomata development in modern plants. As a continuation of his work we approached the stomata regulation problem in modern plants by mining of the publically available transcriptome data on regulation of the stomata movement and formation by three of key regulators: SOC1, SPEECHLESS, and YODA. A goal of the study was to integrate heterogeneous data collections on stomata regulation and disclose the underlying basic regulation pathways that belong to stomata as the specific cell type independently on perturbations of its regulatory pathways. By a fresh algorithmic approach, we managed to extract the underlying stomata regulation genes from divergently designed stomata projects. In particular, we defined groups of genes associated with the stomata patterning, formation, and movement. Additionally, groups of genes were associated with specific pairs of these processes.

Муха Д., Острецов Б., Муха Дм., Бродский Л. Механизмы образования и функционирования устьичного аппарата используют одни и те же регуляторные гены. Изменения климата в геологическом времени находят отражение в морфологии устьиц палеонтологических окаменелостей. Профессор В.А. Красилов внес значительный вклад в изучение формирования устьиц современных растений. В развитие его идей мы подошли к проблеме регуляции работы устьичного аппарата современных растений, проанализировав массив имеющихся данных по транскрибированию функционирования и образования устьичного аппарата тремя ключевыми регуляторами: SOC1, SPEECHLESS и YODA. Цель исследования – интегрировать разнородные данные по регулированию работы устьиц и раскрыть основные пути контроля устьиц, не зависящие от специфических особенностей регуляторных механизмов. С использованием нового алгоритмического подхода нам удалось определить основные регуляторные гены, ассоциированные с устьичным аппаратом, используя разнородные экспериментальные данные. В частности, мы определили группы генов, ассоциированных с расположением, формированием и функционированием устьиц. Кроме того, нами определены группы генов, вовлеченные в несколько регуляторных процессов одновременно.

Keywords: stomata, transcription factors, kinases, gene expression, RNA-Seq, устьица, транскрипционные факторы, киназы, экспрессия генов

PDF


References

Benjamini, Y. & Y. Hochberg 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing when researchers tend to select pursuing multiple the (statistically) and support of conclusions. An unguarded use in a greatly results of single-inference inc. Journal of the Royal Statistical Society. Series B (Methodological) 57:289–300.

Bergmann, D.C., W. Lukowitz & C.R. Somerville 2004. Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497. CrossRef

Brodsky, L., S. Kogan, E. Benjacob & E. Nevo 2010. A binary search approach to whole-genome data analysis. Proceedings of the National Academy of Sciences of the United States of America 107:16893–16898. CrossRef

Chater, C., J.E. Gray & D.J. Beerling 2013. Early evolutionary acquisition of stomatal control and development gene signalling networks. Current Opinion in Plant Biology 16:638–646. CrossRef

Chater, C., Y. Kamisugi, M. Movahedi, A. Fleming, A.C. Cuming, J.E. Gray & D.J. Beerling 2011. Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Current Biology 21: 1025–1029. CrossRef

Cominelli, E., M. Galbiati, A. Vavasseur, L. Conti, T. Sala, M. Vuylsteke, N. Leonhardt, S.L. Dellaporta & C. Tonelli 2005. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology 15:1196–1200. CrossRef

Dow, G.J. & D.C. Bergmann 2014. Patterning and processes: How stomatal development defines physiological potential. Current Opinion in Plant Biology 21:67–74. CrossRef

Du, S.-Y., X.-F. Zhang, Z. Lu, Q. Xin, Z. Wu, T. Jiang, Y. Lu, X.-F. Wang & D.-P.Zhang 2012. Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant molecular biology 80:519–537. CrossRef

Hartung, W., E.W. Weiler & O.H. Volk 1987. Immunochemical evidence that abscisic acid is produced by several species of Anthocerotae and Marchantiales on JSTOR. The Bryologist 90:393–400. CrossRef

Huang, D.W., B.T. Sherman & R.A. Lempicki 2009a. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4:44–57. CrossRef

Huang, D.W., B.T. Sherman & R.A. Lempicki 2009b. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research 37:1–13. CrossRef

Jammes, F., X. Yang, S. Xiao & J.M. Kwak 2011. Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant signaling & behavior 6:1875–1877. CrossRef

Kimura, Y., S. Aoki, E. Ando, A. Kitatsuji, A. Watanabe, M. Ohnishi, K. Takahashi, S-I. Inoue, N. Nakamichi, Y. Tamada & T. Kinoshita 2015. A flowering integrator, SOC1, affects stomatal opening in Arabidopsis thaliana. Plant and Cell Physiology 56: 640–649. CrossRef

Krassilov, V.A. 1968. On classification of stomata. Paleontologicheskii Zhurnal 1:102–109. (in Russian). [Красилов В.А. 1968. К классификации устьичного аппарата // Палеонтологический журнал. № 1. С. 102–109.].

Krassilov, V.A. 1978a. Electron microscopy of stomatal guard cells. Paleontologicheskii Zhurnal 3:128–130. (in Russian). [Красилов В.А. 1978. Электронная микроскопия замыкающих клеток устьиц // Палеонтологический журнал. № 3. С. 128–130.].

Krassilov, V.A. 1978b. Bennettitalean stomata. Palaeobotanist 25:179–184.

Krassilov, V.A. 1995. Scytophyllum and the origin of angiosperm leaf characters. Palaeontological Journal 29:63–75.

Krassilov, V., A. Berner & S. Barinova 2013. Morphology as clue to developmental regulation: stomata. Plant 1(3):30–44. CrossRef

Krassilov, V.A. & E.V. Karasev 2009. Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 284:326–336. CrossRef

Lau, O.S., K.A. Davies, J. Chang, J. Adrian, M.H. Rowe, C.E. Ballenger & D.C. Bergmann 2015. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science 345:1605–1609. CrossRef

Mi, H., A. Muruganujan, J.T. Casagrande & P.D. Thomas 2013. Large-scale gene function analysis with the PANTHER classification system. Nature protocols 8: 1551–1566. CrossRef

Mootha, V.K., C.M. Lindgren, K.-F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstråle, E. Laurila, N. Houstis, M.J. Daly, N. Patterson, J.P. Mesirov, T.R. Golub, P. Tamayo, B. Spiegelman, E.S. Lander, J.N. Hirschhorn, D. Altshuler & L.C. Groop 2003. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature genetics 34: 267–273. CrossRef

Peterson, K.M., A.L. Rychel, K.U. Torii 2010. Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. The Plant Cell 22: 296–306. CrossRef

Rushton, D.L., P. Tripathi, R.C. Rabara, J. Lin, P. Ringler, A.K. Boken, T.J. Langum, L. Smidt, D.D. Boomsma, N.J. Emme, X. Chen, J.J. Finer, Q.J. Shen, P.J. Rushton 2012. WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnology Journal 10: 2–11. CrossRef

Serna, L. 2009. Cell fate transitions during stomatal development. BioEssays: news and reviews in molecular, cellular and developmental biology 31:865–873. CrossRef

Subramanian, A., P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillettea, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander & J.P. Mesirov 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102:15545–15550. CrossRef

Takemiya, A., N. Sugiyama, H. Fujimoto, T. Tsutsumi, S. Yamaguchi, A. Hiyama, Y. Tada, J.M. Christie & K. Shimazaki 2013. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nature Communications 4:2094. CrossRef

UniProt Consortium 2015. UniProt: a hub for protein information. Nucleic Acids Research 43:D204–D212. CrossRef

Wellman, C.H., P.L. Osterloff & U. Mohiuddin 2003. Fragments of the earliest land plants. Nature 425: 282–285. CrossRef







© 2015-2017s Botanica Pacifica